

	CONTENTS				
8.1	Equilibrium and its dynamic nature				
8.2	Physical equilibrium				
8.3	Chemical equilibrium				
8.4	Reversible and Irreversible reactions				
8.5	Law of mass action				
8.6	Equilibrium constant				
Factors which change the State of Equilibrium : 8.7					
0.7	Le-Chatelier's Principle				
8.8	Applications of Le-Chatelier's Principle				
8.9	8.9 Relation between vapour density and degree of dissociation				
	Assignment (Level-1,Level-2)				
	Answer Sheet of Assignment				

Whenever we hear the word Equilibrium immediately a picture arises in our mind an object under the influence of two opposing forces. For chemical reactions also this is true. A reaction also can exist in a state of equilibrium balancing forward and backward reactions.

8.1 Equilibrium and its dynamic nature.

(1) **Definition :** "*Equilibrium* is the state at which the concentration of reactants and products do not change with time. i.e. concentrations of reactants and products become constant."

(2) **Characteristics :** Following are the important characteristics of equilibrium state,

(i) Equilibrium state can be recognised by the constancy of certain measurable properties such as *pressure, density, colour, concentration* etc. by changing these conditions of the system, we can control the extent to which a reaction proceeds.

(ii) Equilibrium state can only be achieved in *close vessel*, but if the process is carried out in an open vessel equilibrium state cannot be attained because in an open vessel, the reverse process will not take place.

(iii) Equilibrium state is *reversible* in nature.

(iv) Equilibrium state is also *dynamic* in nature. Dynamic means *moving* and at a microscopic level, the system is in motion. The dynamic state of equilibrium can be compared to water tank having an inlet and outlet. Water in tank can remain at the same level if the rate of flow of water from inlet (compared to rate of forward reaction) is made equal to the rate of flow of water from outlet (compared to rate of backward reaction). Thus, the water level in the tank remains constant, though both the inlet and outlet of water are working all the time.

(v) At equilibrium state,

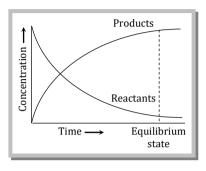
Rate of forward reaction = Rate of backward reaction

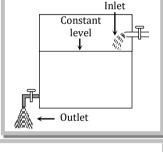
(vi) At equilibrium state, $\Delta G = 0$, so that $\Delta H = T \Delta S$.

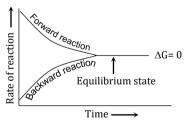
(3) **Types :** Equilibrium in a system implies the existence of the following types of equilibria simultaneously,

(i) *Thermal equilibrium* : There is no flow of heat from one part to another *i.e. T* = *constant.*

(ii) *Mechanical equilibrium* : There is no flow of matter from one part to another *i.e. P* = *constant*.


(iii) *Physical equilibrium* : There is the substance exist in three states: solid, liquid and gaseous.


(iv) *Chemical equilibrium* : There is no change in composition of any part of the system with time.


8.2 Physical equilibrium.

The physical equilibrium is a state of equilibrium between the same chemical species in different phases (solid, liquid and gaseous). The various equilibria which can exist in any physical system are,

Solid	#	Liquid
Liquid	1	Vapour
Solid	1	Gas(vapour)

Solid	#	Saturated solution of solid in a liquid
Gas(vapour)	1	Saturated solution of gas in a liquid

(1) Solid-liquid equilibrium

Rate of transfer of molecules from ice to water =Rate of melting of ice

Rate of transfer of molecules from water to ice Rate of freezing of water

Free energy change and solid-liquid equilibrium in water : For ice-water system free energy change (ΔG), at 273 K, and one atmosphere pressure is zero *i.e.*, $\Delta G = 0$; Ice \Rightarrow Water; $H_2O(s) \Rightarrow H_2O(l)$

=

(i) At temperature higher than 273 *K*, and 1 *atm* pressure, $\Delta G < 0$. Thus, the process in the forward direction would become favourable and ice will melt to give more water.

(ii) At temperature less than 273 K, and 1 atm pressure, $\Delta G > 0$. Thus, the reverse reaction will become favourable, and more ice will be formed from liquid water.

(2) Liquid-vapour equilibrium : A liquid placed in an open container disappears completely. After some time vapours of the liquid held in an open container can escape out to the atmosphere. Thus, when vapour of liquid exists in equilibrium with the liquid, then

Rate of vaporisation = Rate of condensation,

 $H_2O(l) \rightleftharpoons H_2O(v)$

Conditions necessary for a liquid-vapour equilibrium

(i) The system must be a closed system *i.e.*, the amount of matter in the system must remain constant.

(ii) The system must be at a constant temperature.

(iii) The visible properties of the system should not change with time.

(3) **Solid-vapour equilibrium :** Certain solid substances on heating get converted directly into vapour without passing through the liquid phase. This process is called *sublimation*. The vapour when cooled, gives back the solid, it is called *disposition*.

Solid
$$\Rightarrow$$
 Vapour

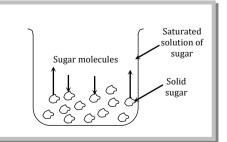
The substances which undergo sublimation are camphor, iodine, ammonium chloride etc.

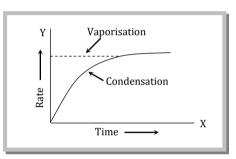
For example, Ammonium chloride when heated sublimes.

$$NH_4 Cl(s) \xrightarrow{\text{neal}} NH_4 Cl(v)$$

(4) Equilibrium between a solid and its solution : When a saturated solution is in contact with the solid solute, there exists a dynamic equilibrium between the solid and the solution phase.

Solid substance \Rightarrow Solution of the substance


Example : Sugar and sugar solution. In a saturated solution, a dynamic equilibrium is established between dissolved sugar and solid sugar.


Sugar (s) \Rightarrow Sugar (aq)

At the equilibrium state, the number of sugar molecules going into the solution from the solid sugar is equal to the number of molecules precipitating out from the solution, *i.e.*, at equilibrium,

Rate of dissolution of solid sugar = Rate of precipitation of sugar from the solution.

(5) Equilibrium between a gas and its solution in a liquid : Gases dissolve in liquids. The solubility of a gas in any liquid depends upon the,

(i) Nature of the gas and liquid.

(ii) Temperature of the liquid.

(iii) Pressure of the gas over the surface of the solution.

Henry's law : "At a certain temperature, the mass of a gas which dissolves in a definite volume of a liquid is proportional to the pressure of the gas in equilibrium with the solution."

 $m \propto P \text{ or } m = KP$; (where *K* is the proportionality constant)

Thus, at a constant temperature, the ratio of the molar concentration of the gas in the solution and into the atmosphere is constant.

Limitations of Henry's law

• Henry's law is applicable to ideal gases only. Henry's law should be applied only at low pressures because real gases behave like ideal gases at low pressures.

• Henry's law is not applicable to gases which react chemically with the solvent.

• Henry's law will not apply to the solution of gases like ammonia (NH_3) and hydrogen chloride (*HCl*) in water because these gases react chemically with water.

Note : \Box A chilled soda water bottle fizzes out when opened because, soda water is a solution of carbon dioxide gas, $CO_2(g)$ in water at high pressure. As soon as the bottle is opened under normal atmospheric conditions, the dissolved gas escapes out to reach a new equilibrium state, so that the pressure of the gas inside the bottle becomes equal to the atmospheric pressure. At low pressure, the solubility of the gas in water decreases.

8.3 Chemical equilibrium.

The equilibrium between different chemical species present in the same or different phases is called *chemical equilibrium*. There are two types of chemical equilibrium.

(1) **Homogeneous equilibrium :** The equilibrium reactions in which all the reactants and the products are in the same phase are called *homogeneous equilibrium reactions.*

Example: (i) $C_2H_5OH(l) + CH_3COOH(l) \Rightarrow CH_3COOC_2H_5(l) + H_2O(l)$

(ii)
$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

gas phase
(iii) $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

(2) **Heterogeneous equilibrium :** The equilibrium reactions in which the reactants and the products are present in different phases are called *heterogeneous equilibrium reactions*.

Example: (i) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ (ii) $2NaHCO_3(s) \rightleftharpoons Na_2CO_3(s) + CO_2(g) + H_2O(g)$ (iii) $H_2O(l) \rightleftharpoons H_2O(g)$

(iv)
$$Ca(OH)_2(s) + H_2O(l) \rightleftharpoons Ca^{2+}(aq) + 2OH^-(aq)$$

Note : The equilibrium expression for heterogeneous reactions does not include the concentrations of pure solids because their concentrations remain constant.

8.4 Reversible and irreversible reactions

A chemical reaction is said to have taken place when the concentration of reactants decreases, and the concentration of the products increases with time. The chemical reactions are classified on the basis of the extent to which they proceed, into the following two classes;

(1) **Reversible reactions :** Reactions in which only a part of the total amount of reactants is converted into products are termed as *reversible reactions*.

(i) Characteristics of reversible reactions

(a) These reactions can be started from either side,

(b) These reactions are never complete,

(c) These reactions have a tendency to attain a state of equilibrium,

(d) This sign (\Rightarrow) represents the reversibility of the reaction,

(e) Free energy change in a reversible reaction is zero ($\Delta G = 0$),

(ii) Examples of reversible reactions

(a) Neutralisation between an acid and a base either of which or both are weak e.g.,

 $CH_{3}COOH + Na OH \Rightarrow CH_{3}COONa + H_{2}O$

(b) Salt hydrolysis, e.g., Fe Cl₃ + $3H_2O \Rightarrow Fe(OH)_3 + 6HCl$

(c) Thermal decomposition, e.g., $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)} - Q$

$$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$$
; $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$

(d) Esterification, e.g., $CH_3COOH + C_2H_5OH = CH_3COOC_2H_5 + H_2O$

(e) Evaporation of water in a closed vessel, e.g., $H_2O_{(l)} = H_2O_{(g)} - Q$

(f) Other reactions, e.g., $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)} + Q$; $2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)} + Q$

(2) **Irreversible reactions** : Reactions in which the entire amounts of the reactants are converted into products are termed as *irreversible reactions*.

(i) Characteristics of irreversible reactions

- (a) These reactions proceed only in one direction (forward direction),
- (b) These reactions can proceed to completion,
- (c) The arrow (\rightarrow) is placed between reactants and products,
- (d) In an irreversible reaction, $\Delta G < 0$,

(ii) Examples of irreversible reactions

(a) Neutralisation between strong acid and strong base e.g. NaOH + HCl \rightarrow NaCl + H₂O + 13.7 kcal

(b) Double decomposition reactions or precipitation reactions e.g.

$$BaCl_{2(aq)} + H_2SO_{4(aq)} \rightarrow BaSO_{4(s)} \downarrow + 2HCl_{(aq)}; AgNO_{3(aq)} + NaCl_{(aq)} \rightarrow AgCl_{(g)} \downarrow + NaNO_{3(aq)} \downarrow + Na$$

(c) Thermal decomposition, e.g. $2KClO_{3(s)} \xrightarrow{MnO_2,\Delta} 2KCl_{(s)} + 3O_2 \uparrow$

$$2Pb(NO_3)_2 \xrightarrow{\text{heat}} 2PbO + 4NO_2 + O_2 \uparrow; NH_4NO_2 \xrightarrow{\text{heat}} N_2 \uparrow + 2H_2O \uparrow$$

(d) Redox reactions, e.g., $SnCl_{2(aq)} + 2FeCl_{3(aq)} \rightarrow SnCl_{4(aq)} + 2FeCl_{2(aq)}$

(e) Other reactions, e.g., $NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl \uparrow$

8.5 Law of mass action.

On the basis of observations of many equilibrium reactions, two Norwegian chemists *Guldberg* and *Waage* suggested (1864) a quantitative relationship between the rates of reactions and the concentration of the reacting substances. This relationship is known as *law of mass action*. It states that

"The rate of a chemical reaction is directly proportional to the product of the molar concentrations of the reactants at a constant temperature at any given time."

The molar concentration *i.e. number of moles per litre* is also called *active mass*. It is expressed by enclosing the symbols of formulae of the substance in square brackets. For example, molar concentration of *A* is expressed as [*A*].

Let us consider a simple reaction between the species *A* and *B* : $A + B \rightarrow$ Products

According to law of mass action, rate of reaction, $r \propto [A] [B] = k [A] [B]$

Where [*A*] and [*B*] are the molar concentrations of the reactants *A* and *B* respectively, *k* is a constant of proportionality for the forward reaction and is known as *rate constant*. The rate constant is also called *velocity constant*. Now, if the concentration of each of the reactants involved in the reaction is unity, *i.e.*, [*A*] = [*B*] = 1, then, rate of reaction, $r = k \times 1 \times 1$ or r = k

Thus, the rate constant of a reaction at a given temperature may be defined as "*the rate of the reaction when the concentration of each of the reactants is unity.*"

For a general reaction, $aA + bB + cC \rightarrow$ Products

The law of mass action may be written as : Rate of reaction, $r = k[A]^{a}[B]^{b}[C]^{c}$

Thus, the law of mass action may be restated as, "The rate of a chemical reaction at any particular temperature is proportional to the product of the molar concentrations of reactants with each concentration term raised to the power equal to the number of molecules of the respective reactants taking part in the reaction."

The number of molecules of a reactant taking part in a reaction is also called its *stoichiometric coefficient*. For example, *a*, *b* and *c*.... in the above equation are called stoichiometric coefficients of *A*, *B* and *C*.... respectively.

8.6 Equilibrium constant

(1) **Equilibrium constant in terms of law of mass action :** The law of mass action may be applied to a reversible reaction to derive a mathematical expression for equilibrium constant known as *law of chemical equilibrium*.

Let us consider a simple reversible reaction, $A + B \Rightarrow X + Y$ in which an equilibrium exists between the reactants (*A* and *B*) and the products (*X* and *Y*). The forward reaction is,

$$A + B \to X + Y$$

According to law of mass action,

Rate of forward reaction
$$\propto$$
 [*A*][*B*] = $k_f[A][B]$

Where k_f is the rate constant for the forward reaction and [A] and [B] are molar concentrations of reactants A and B respectively.

Similarly, the backward reaction is ; $X + Y \rightarrow A + B$

Rate of backward reaction \propto [*X*][*Y*] = k_b [*X*][*Y*]

Where k_b is the rate constant for the backward reaction and [X] and [Y] are molar concentrations of products X and Y respectively.

At equilibrium, the rates of two opposing reactions become equal. Therefore, at equilibrium,

Rate of forward reaction = Rate of backward reaction

$$k_{f}[A][B] = k_{b}[X][Y]$$

$$\overline{\frac{k_{f}}{k_{b}} = \frac{[X][Y]}{[A][B]}} \quad \text{or} \quad K = \frac{[X][Y]}{[A][B]}$$

The combined constant *K*, which is equal to k_f / k_b is called *equilibrium constant* and has a constant value for a reaction at a given temperature. The above equation is known as *law of chemical equilibrium*.

For a general reaction of the type : $aA + bB \Rightarrow cC + dD$

The equilibrium constant may be represented as : $K = \frac{[C]^c [D]^d}{[A]^a [B]^b}$

where the exponents *a*, *b*, *c* and *d* have the same values as those in the balanced chemical equation. Thus, *the equilibrium constant* may be defined as,

"The ratio between the products of molar concentrations of the products to that of the molar concentrations of the reactants with each concentration term raised to a power equal to its stoichiometric coefficient in the balanced chemical equation at a constant temperature."

(2) Characteristics of equilibrium constant

(i) The value of equilibrium constant is independent of the original concentration of reactants.

For example, the equilibrium constant for the reaction,

$$Fe^{3+}(aq) + SCN^{-}(aq) = FeSCN^{2+}(aq); K = \frac{[FeSCN^{2+}]}{[Fe^{3+}][SCN^{-}]} = 138.0 Lmol^{-1} (at 298 K)$$

Whatever may be the initial concentrations of the reactants, Fe^{3+} and SCN^{-} ions, the value of *K* comes out to be 138.0 *L* mol⁻¹ at 298 *K*.

(ii) *The equilibrium constant has a definite value for every reaction at a particular temperature.* However, it varies with change in temperature.

For example, the equilibrium constant for the reaction between hydrogen and iodine to form hydrogen iodide is 48 at 717 *K*.

$$H_2(g) + I_2(g) = 2HI(g); \quad K = \frac{[HI]^2}{[H_2][I_2]} = 48$$

For this reaction, the value of *K* is fixed as long as the temperature remains constant.

(iii) For a reversible reaction, the equilibrium constant for the forward reaction is inverse of the equilibrium constant for the backward reaction.

For example, if equilibrium constant, K, for the reaction of combination between hydrogen and iodine at 717 K is 48

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g); K' = \frac{[HI]^2}{[H_2][I_2]} = 48$$

Then, the equilibrium constant for the decomposition of hydrogen iodide is the inverse of the above equilibrium constant.

$$2HI(g) \Rightarrow H_2(g) + I_2(g); \quad K = \frac{[H_2][I_2]}{[HI]^2} = \frac{1}{K'} = \frac{1}{48} = 0.02$$
$$\boxed{K_{\text{forward reaction}}} = \frac{1}{K'_{\text{backward reaction}}}$$

In general, K

(iv) The value of an equilibrium constant tells the extent to which a reaction proceeds in the forward or reverse *direction*. If value of *K* is large, the reaction proceeds to a greater extent in the forward direction and if it is small, the reverse reaction proceeds to a large extent and the progress in the forward direction is small.

(v) *The equilibrium constant is independent of the presence of catalyst.* This is so because the catalyst affects the rates of forward and backward reactions equally.

(vi) The value of equilibrium constant changes with the change of temperature. Thermodynamically, it can be shown that if K_1 and K_2 be the equilibrium constants of a reaction at absolute temperatures T_1 and T_2 . If ΔH is the heat of reaction at constant volume, then

$$\log K_2 - \log K_1 = \frac{-\Delta H}{2.303 R} \left[\frac{1}{T_2} - \frac{1}{T_1} \right]$$
(Van't Hoff equation)

The effect of temperature can be studied in the following three cases

(a) When $\Delta H = 0$ *i.e., neither heat is evolved nor absorbed*

 $\log K_2 - \log K_1 = 0 \text{ or } \log K_2 = \log K_1 \text{ or } K_2 = K_1$

Thus, equilibrium constant remains the same at all temperatures.

(b) When $\Delta H = +ve$ *i.e., heat is absorbed,* the reaction is *endothermic*. The temperature T_2 is higher than T_1 .

$$\log K_2 - \log K_1 = +ve$$
 or $\log K_2 > \log K_1$ or $K_2 > K_1$

The value of equilibrium constant is higher at higher temperature in case of endothermic reactions. (c) When $\Delta H = -ve$, *i.e.*, heat is evolved, the reaction is **exothermic**. The temperature T_2 is higher than T_1 .

 $\log K_2 - \log K_1 = -ve$ or $\log K_1 > \log K_2$ or $K_1 > K_2$

The value of equilibrium constant is lower at higher temperature in the case of exothermic reactions. (vii) The value of the equilibrium constant depends upon the stoichiometry of the chemical equation.

Examples :

(a) If the equation (having equilibrium constant *K*) is divided by 2, then the equilibrium constant for the new equation is the square root of *K* i.e. \sqrt{K} . For example, the thermal dissociation of *SO*₃ can be represented in two ways as follows,

$$2SO_{3}(g) \Rightarrow 2SO_{2}(g) + O_{2}(g) \text{ and } SO_{3}(g) \Rightarrow SO_{2}(g) + 1/2O_{2}(g)$$
$$K = \frac{[SO_{2}]^{2}[O_{2}]}{[SO_{3}]^{2}} \text{ and } K' = \frac{[SO_{2}][O_{2}]^{1/2}}{[SO_{3}]}; \quad \overline{K' = \sqrt{K} \text{ or } (K)^{1/2}}$$

(b) Similarly, if a particular equation is multiplied by 2, the equilibrium constant for the new reaction (*K*') will be the square of the equilibrium constant (*K*) for the original reaction *i.e.*, $\overline{K' = K^2}$

(c) If the chemical equation for a particular reaction is written in two steps having equilibrium constants K_1 and K_2 , then the equilibrium constants are related as $\overline{K = K_1 \times K_2}$

For example, the reaction $N_2(g) + 2O_2(g) \Rightarrow 2NO_2(g)$ with equilibrium constant (*K*) can be written in two steps :

 $N_2(g) + O_2(g) = 2NO(g)$; (Equilibrium constant = K_1)

 $2NO(g) + O_2(g) \Rightarrow 2NO_2(g)$; (Equilibrium constant = K_2)

Now,
$$K_1 = \frac{[NO]^2}{[N_2][O_2]}$$
 and $K_2 = \frac{[NO_2]^2}{[NO]^2[O_2]}$

Therefore, $K_1 \times K_2 = \frac{[NO]^2}{[N_2][O_2]} \times \frac{[NO_2]^2}{[NO]^2[O_2]} = \frac{[NO_2]^2}{[N_2][O_2]^2} = K$

(3) Types of equilibrium constant : Generally two types of equilibrium constants are used,

(i) $K_c \rightarrow It$ is used when the various species are generally expressed in terms of *moles/litre* or in terms of molar concentrations.

(ii) $K_p \rightarrow$ It is used when in gaseous reactions, the concentration of gases expressed in terms of their partial pressures.

 K_p is not always equal to K_c . K_p and K_c are related by the following expression, $K_p = K_c (RT)^{\Delta n}$

where, $R = \text{Gas constant} = 0.0831 \ bardm^3 \ mol^{-1} \ k^{-1}$; T = Temperature in Kelvin

 Δn = number of moles of gaseous products – number of moles of gaseous reactants in chemical equation

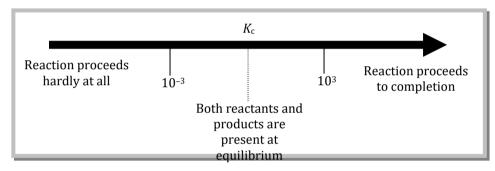
(4) **Unit of equilibrium constant** : Equilibrium constant *K* has no units *i.e.*, dimensionless if the total number of moles of the products is exactly equal to the total number of moles of reactants. On the other hand if the number of mioles of products and reactants are not equal, *K* has specific units.

Units of K_p and K_c and the value of Δn

Value of ∆n	Relation between K_p and K_c	Units of K _p	Units of K _c
-------------	----------------------------------	-------------------------	-------------------------

0	$K_P = K_c$	No unit	No unit
>0	$K_p > K_c$	$(atm)^{\Delta_n}$	(mole l^{-1}) ^{Δ_n}
<0	$K_p < K_c$	$(atm)^{\Delta_n}$	(mole l^{-1}) ^{Δ_n}

(5) **Applications of equilibrium constant :** Knowing the value of the equilibrium constant for a chemical reaction is important in many ways. For example, it judge the extent of the reaction and predict the direction of the reaction.


(i) Judging the extent of reaction

We can make the following generalisations concerning the composition of equilibrium mixture.

(a) If $K_c > 10^3$, products predominate over reactants. If K_c is very large, the reaction proceeds almost all the way to completion.

(b) If $K_c < 10^{-3}$, reactants predominate over products. If K_c is very small, the reaction proceeds hardly at all.

(c) If K_c is in the range 10⁻³ to 10³, appreaciable concentration of both reactants and products are present. This is illustrated as follows,

(ii) **Reaction quotient and predicting the direction of reaction :** The concentration ratio, *i.e.*, ratio of the product of concentrations of products to that of reactants is also known as **concentration quotient** and is denoted by **Q**.

Concentration quotient, $Q = \frac{[X][Y]}{[A][B]}$.

It may be noted that *Q* becomes equal to equilibrium constant (*K*) when the reaction is at the equilibrium state. At equilibrium, $Q = K = K_c = K_p$. Thus,

(a) If *Q* > *K*, the reaction will proceed in the direction of reactants (*reverse reaction*).

(b) If *Q* < *K*, the reaction will proceed in the direction of the products (*forward reaction*).

(c) If *Q* = *K*, the reaction mixture is already *at equilibrium*.

Thus, a reaction has a tendency to form products if Q < K and to form reactants if Q > K.

This has also been shown in figure,

(6) **Calculation of equilibrium constant**: We have studied in the characteristics of the equilibrium constant that its value does not depend upon the original concentrations of the reactants and products involved in the reaction. However, its value depends upon their concentrations at the equilibrium point. Thus, if the equilibrium concentrations of the species taking part in the reaction be known, then the value of the equilibrium constant and *vice versa* can be calculated.

	$\Delta n = 0 \; ; \; K_p = K_c$	$\Delta n < 0$; $K_p < K_c$	$\Delta n > 0; K_p > K_c$
	$\begin{array}{cccc}H_2 + I_2 & \rightleftharpoons & 2HI\\ \scriptstyle (g) & \scriptstyle (g) & \scriptstyle (g)\end{array}$	$N_2 + 3H_2 \approx 2NH_3$ (g) (g) (g)	$2SO_{2} + O_{2} = 2SO_{3}$ (g) (g) (g)	$\frac{PCl_{5}}{\binom{g}{2}} \approx \frac{PCl_{3} + Cl_{2}}{\binom{g}{3}}$
Initial mole	1 1 0	1 3 0	2 1 0	1 0 0
Mole at Equilibrium	(1-x) $(1-x)$ $2x$	(1-x) $(3-3x)$ $2x$	(2-2x) $(1-x)$ $2x$	(1- <i>x</i>) <i>x x</i>
Total mole at equilibrium	2	(4 – 2 <i>x</i>)	(3 - <i>x</i>)	(1 + <i>x</i>)
Active masses	$\left(\frac{1-x}{V}\right) \left(\frac{1-x}{V}\right) \frac{2x}{V}$	$\left(\frac{1-x}{V}\right) \ 3\left(\frac{1-x}{V}\right) \left(\frac{2x}{V}\right)$	$\left(\frac{2-2x}{V}\right) \left(\frac{1-x}{V}\right) \left(\frac{2x}{V}\right)$	$\left(\frac{1-x}{V}\right) \left(\frac{x}{V}\right) \left(\frac{x}{V}\right)$
Mole fraction	$\left(\frac{1-x}{2}\right)\left(\frac{1-x}{2}\right) \frac{2x}{2}$	$\frac{1-x}{2(2-x)} \frac{3}{2} \left(\frac{1-x}{2-x}\right) \frac{x}{(2-x)}$	$\left(\frac{2-2x}{3-x}\right) \left(\frac{1-x}{3-x}\right) \left(\frac{2x}{3-x}\right)$	$\left(\frac{1-x}{1+x}\right) \left(\frac{x}{1+x}\right) \left(\frac{x}{1+x}\right)$
Partial pressure	$p\left(\frac{1-x}{2}\right) p\left(\frac{1-x}{2}\right) p\left(\frac{2x}{2}\right)$	$P\left(\frac{1-x}{2(2-x)_{-}}\right)P\left(\frac{3(1-x)}{2(2-x)}\right)\frac{Px}{(2-x)}$	$P\left(\frac{2-2x}{3-x}\right) P\left(\frac{1-x}{3-x}\right) P\left(\frac{2x}{3-x}\right)$	$P\left(\frac{1-x}{1+x}\right) P\left(\frac{x}{1+x}\right) P\left(\frac{x}{1+x}\right)$
K _c	$\frac{4x^2}{(1-x)^2}$	$\frac{4x^2V^2}{27(1-x)^4}$	$\frac{x^2 V}{(1-x)^3}$	$\frac{x^2}{(1-x)V}$
K _p	$\frac{4x^2}{(1-x)^2}$	$\frac{16x^2(2-x)^2}{27(1-x)^4P^2}$	$\frac{x^{2}(3-x)}{P(1-x)^{3}}$	$\frac{Px^2}{\left(1-x^2\right)}$

Homogeneous equilibria and equations for equilibrium constant (Equilibrium pressure is *P atm* in a V L flask)

Heterogeneous equilibria and equation for equilibrium constant (Equilibrium pressure is P atm)

	$NH_4HS(s)$	$\Rightarrow NH_3(g)$	+ $H_2S(g)$	$C(s) + CO_2(g)$	$\Rightarrow 2CO(g)$	$NH_2CO_2NH_4$	$(s) = 2NH_3$	$(g) + CO_2(g)$
Initial mole	1	0	0	1 1	0	1	0	0
Mole at equilibrium	(1- <i>x</i>)	X	X	(1-x) $(1-x)$	2 <i>x</i>	(1- <i>x</i>)	2 <i>x</i>	x
Total moles at equilibrium (solid not included)		2 <i>x</i>		(1+ <i>x</i>)			3 <i>x</i>	
Mole fraction	$\frac{x}{2x}$	- = -	$\frac{1}{2}$	$\left(\frac{1-x}{1+x}\right)$	$\left(\frac{2x}{1+x}\right)$		$\frac{2}{3}$	$\frac{1}{3}$
Partial pressure		$\frac{P}{2}$	$\frac{P}{2}$	$P\!\left(\frac{1-x}{1+x}\right)$	$P\left(\frac{2x}{1+x}\right)$		$\frac{2P}{3}$	$\frac{P}{3}$
K_{p}		$\frac{P^2}{4}$		$\frac{4P^2x^2}{(1-x^2)}$)		$\frac{4P^3}{27}$	

(7) **Equilibrium constant and standard free energy change :** Standard free energy change of a reaction and its equilibrium constant are related to each other at temperature *T* by the following relation,

 $\Delta G^{\circ} = -2.303 \ RT \log K$

when, $\Delta G^o=-ve$, the value of equilibrium constant will be large positive quantity and

when, $\Delta G^{\circ} = +ve$, the value of equilibrium constant is less than 1 *i.e.*, low concentration of products at equilibrium state.

Examples based on Equilibrium constant, K_P & K_c and ΔG° = –2.303 RT log K

Example : 1	In the reversible reaction $A + B = C + D$, the concentration of each C and D at equilibrium was 0.8 <i>mole/litre</i> ,				
	then the equilibrium o	onstant K_c will be			[MP PET 1986]
	(a) 6.4	(b) 0.64	(c) 1.6	(d) 16.0	
Solution: (d)	Suppose 1 <i>mole</i> of <i>A</i> at and <i>B</i> will be (1 – 0.8)		<i>mole/litre</i> of <i>C</i> and <i>D</i> ea	ich formed remaining conc	entration of A
	$K_{c} = \frac{[C][D]}{[A][B]} = \frac{0.8 \times 0}{0.2 \times 0}$	$\frac{0.8}{0.2} = 16.0$			
Example : 2	For the system $A(g)$ +	$2B(g) \rightleftharpoons C(g)$, the equilib	orium concentrations ar	re (A) 0.06 <i>mole/litre</i> (B) 0	.12 mole/litre
	(C) 0.216 mole/litre.	The K_{eq} for the reaction	is		[CPMT 1983]
	(a) 250	(b) 416	(c) 4×10^{-3}	(d) 125	
Solution: (a)	For reaction $A + 2B \Rightarrow$	C; $K_{eq} = \frac{[C]}{[A][B]^2} = \frac{1}{0.0000000000000000000000000000000000$	$\frac{0.216}{6 \times 0.12 \times 0.12} = 250$		
Example : 3	Molar concentration o	f O_2 is 96 gm, it contained	ed in 2 <i>litre</i> vessel, activ	ve mass will be	
	(a) 16 mole/litre	(b) 1.5 mole/litre	(c) 4 mole/litre	(d) 24 mole/litre	
	weight	-			
Solution: (b)	Active mass $= \frac{M.wt.}{Volume}$	$\frac{1}{M.wt. \times Volume} = \frac{9}{32}$	$\frac{96}{2} = \frac{3}{2} = 1.5 \text{ mol} / \text{litro}$	e	
Example : 4		heated in a closed vesse value of equilibrium cons		equilibrium, 40% of <i>PCl</i> ₅	is dissociated [MP PMT 1989]
	(a) 0.266	(b) 0.53	(c) 2.66	(d) 5.3	
Solution: (a)	At start, $PCl_5 = \frac{2}{2}$				
	At equilibrium. $\frac{2 \times 60}{100}$	$-\frac{2\times40}{100}\frac{2\times40}{100}$			
	Volume of cantainer =	2 litre			
	$2 \times 40 \times 2$	× 40			
	$\therefore K_c = \frac{\frac{2 \times 40}{100 \times 2} \times \frac{2}{100}}{\frac{2 \times 60}{2}}$	$\frac{0 \times 2}{2} = 0.266$			
	100×2				

Example : 5 A mixture of 0.3 mole of H_2 and 0.3 mole of I_2 is allowed to react in a 10 litre evacuated flask at 500° C. The reaction is $H_2 + I_2 \Rightarrow 2HI$ the K_c is found to be 64. The amount of unreacted I_2 at equilibrium is

					[KCET 1990]
	(a) 0.15 <i>mole</i>	(b) 0.06 mole	(c) 0.03 mole	(d) 0.2 mole	
Solution: (b)	$K_c = \frac{[HI]^2}{[H_2][I_2]};$ 64	$h = \frac{x^2}{0.03 \times 0.03}$			
	$x^2 = 64 \times 9 \times 10^{-4}$	$x = 8 \times 3 \times 10^{-2} = 0.24$			

	x is the amount of H	at equilibrium. Amoun	t of I_2 at equilibrium w	vill be	
	0.30 - 0.24 = 0.06 mc	ole			
Example : 6		orward and backward r quilibrium constant for		of ester are 1.1×10^{-2} and	d 1.5×10^{-3} per
	$CH_3COOC_2H_5 + H_2$	$O \rightleftharpoons CH_3 COOH + C_2 H$	I ₅ OH is		[AIIMS 1999]
	(a) 4.33	(b) 5.33	(c) 6.33	(d) 7.33	
Solution: (d)	$K_f = 1.1 imes 10^{-2}$, $K_b =$	$= 1.5 \times 10^{-3}$; $K_c = \frac{K_f}{K_b} =$	$\frac{1.1 \times 10^{-2}}{1.5 \times 10^{-3}} = 7.33$		
Example : 7	For the reaction PCl_3	$(g) + Cl_2(g) \rightleftharpoons PCl_5$ at 2	$50^{\circ} C$, the value of K_{c}	is 26, then the value of A	K_p on the same
	temperature will be			[MNR 19	90; MP PET 2001]
	(a) 0.61	(b) 0.57	(c) 0.83	(d) 0.46	
Solution: (a)	$\Delta n_g = 1 - 2 = -1$	1			
	$\therefore K_p = K_c (RT)^{\Delta n}; ::$	r -			
	Since <i>R</i> = 0.0821 <i>litre d</i>	$k^{-1} mol^{-1}, T = 250°C$	$= 250 + 273 = 523 K_p$	$= 26 (0.0821 \times 523)^{-1} = 0.4$	61
Example : 8	If K_p for reaction $A_{(g)}$ -	$+2B_{(g)} \rightleftharpoons 3C_{(g)} + D_{(g)}$ is	0.05 <i>atm</i> at 1000K its <i>l</i>	K _c in term of <i>R</i> will be	[CBSE PMT 1989]
	(a) $\frac{5 \times 10^{-4}}{5 \times 10^{-4}}$	(b) $\frac{5}{R}$	(c) $\frac{5 \times 10^{-5}}{5}$	(d) None of these	
	R	Λ	R		
Solution: (c)	$K_p = K_c (RT)^{\Delta n} \Longrightarrow 5 \times$	$10^{-2} = K_c (R \times 1000)^1 =$	$ K_c = \frac{5 \times 10^{-5}}{R} $		
Example : 9	If the equilibrium cons	stant of the reaction 2H	$I \Rightarrow H_2 + I_2$ is 0.25, then	the equilibrium constant	t of the reaction
	$H_2 + I_2 \Rightarrow 2HI$ would b	e		ſ	MP PMT 1989, 95]
	(a) 1.0	(b) 2.0	(c) 3.0	(d) 4.0	
Solution: (d)	K_c for the IInd react	ion is reverse of Ist for	reaction $2HI \Rightarrow H_2 +$	I_2 is 0.25 K'_c for react	ion, $H_2 + I_2 \rightleftharpoons$
	$2HI$ will be $K'_c = \frac{1}{K_c}$	$-=\frac{1}{0.25}=4$.			
	K _c	0.25			
Example : 10	If equilibrium constan	t for reaction $2AB \rightleftharpoons A_2$	$+B_2$, is 49, then the eq	quilibrium constant for re	action AB
	$\Rightarrow \frac{1}{2}A_2 + \frac{1}{2}B_2$, will b	0e		[MP PMT 20	03; EAMCET 1998]
	(a) 7	(b) 20	(c) 49	(d) 21	
Solution: (a)	$2AB \Rightarrow A_2 + B_2$				
	$K_c = \frac{[A_2][B_2]}{[AB]^2} = 49$				
	For reaction $AB \Rightarrow \frac{1}{2}$	$A_2 + \frac{1}{2}B_2$			
	2	2			

	$K'_{c} = \frac{[A_{2}]^{1/2} [B_{2}]^{1/2}}{[AB]}$	
	$K_c' = \sqrt{K_c} = \sqrt{49} = 7$	
Example : 11	For the reaction $2NO_{2(g)} \approx 2NO_{(g)} + O_{2(g)}$ $K_c = 1.8 \times 10^{-6}$ at $185^{\circ} C \cdot K_c$	At $185^{o}C$, the value of K_c' for the
	reaction $NO_{(g)} + \frac{1}{2}O_{2(g)} \rightleftharpoons NO_{2(g)}$ is	[UPSEAT 2000]
Solution : (b)	(a) 0.9×10^{6} (b) 7.5×10^{2} (c) 1.95×10^{-3} Reaction is reversed and halved.	(d) 1.95×10^3
	$\therefore K'_{c} = \frac{1}{\sqrt{K_{c}}}; K'_{c} = \frac{1}{\sqrt{1.8 \times 10^{-6}}} = 7.5 \times 10^{-2}$	
Example : 12	In an equilibrium reaction for which $\Delta G^0 = 0$ the equilibrium constant K_{μ}	, should be [BHU 1987]
	(a) 0 (b) 1 (c) 2	(d) 10
Solution: (b)	If $\Delta G^0 = 0$ and $\Delta G^0 = -2.303 \ RT \log K_p$	
	$\log K_p = 0 , K_p = 1$	
Example : 13	ΔG^0 for $HI_{(g)} \cong +1.7 kJ / mole$ what is the equilibrium constant at $25^{\circ} C$	for $2HI_{(g)} \rightleftharpoons H_{2(g)} + I_{2(g)}$
	(a) 24.0 (b) 3.9 (c) 2.0	[KCET 1992]
Solution: (d)	(a) 24.0 (b) 3.9 (c) 2.0 $\Delta G^0 = -2.303 \ RT \ \log K_p = -2.303 \times 8.314 \times 10^{-3} \times 298 \ \log K_p$	(d) 0.5
Solution. (u)		
	$1.7 = -2.303 \times 8.314 \times 10^{-3} \times 298 \log K_p$	
Example : 14	$K_p = 0.5$	the temperature is increased from
Example : 14	It is found that the equilibrium constant increases by a factor of four when $25^{\circ} C$ to $40^{\circ} C$. The value of ΔH° is	the temperature is increased from
	(a) $25.46 kJ mol^{-1}$ (b) $171.67 kJ mol^{-1}$ (c) $89.43 kJ mol^{-1}$	(d) $71.67 kJ mol^{-1}$
Solution: (d)	Using the equation,	
	$\log \frac{(K_p)_{40^{\circ}C}}{(K_p)_{25^{\circ}C}} = \frac{\Delta H}{2.303 R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right),$	
	we get log 4 = $\frac{\Delta H}{2.303 \times 8.314} \left(\frac{1}{273 + 25} - \frac{1}{273 + 40} \right)$	
	$\therefore \Delta H = 71.67 kJ mol^{-1}$	
Example : 15	K_c for the reaction $A(g) + B(g) \Rightarrow 2C(g)$ is 3.0 at 400K. In an experiment	"a" mol of A is mixed with 3 mol of
	<i>B</i> in a 1- <i>L</i> vessel. At equilibrium 3 <i>mol</i> of <i>C</i> is formed. The value of ' <i>a</i> ' will be	
	(a) 4.5 mol (b) 9.5 mol (c) 2.5 mol	(d) 3.5 <i>mol</i>
Solution: (d)	$\begin{array}{rcl} A(g) + B(g) &\rightleftharpoons& 2C(g) \\ a & 3 & 0 \\ a - x & 3 - x & 2x \end{array}$	
	From the equation, $2x = 3 \Rightarrow x = 1.5$	
	$K_c = \frac{4x^2}{(a-x)(b-x)}; \ 3 = \frac{4 \times (1.5)^2}{(a-1.5)(3-1.5)}; \ 3 = \frac{4 \times 2.25}{(a-1.5)(1.5)} \Rightarrow a = 3.5$	

Example : 16 For the reaction
$$AB(g) \leftarrow A(g) + B(g), AB$$
 is 33% dissociated at a total pressure of P. Then
(a) $P = K_p$ (b) $P = 4K_p$ (c) $P = 3K_p$ (d) $p = 8K_p$
Solution: (d) $AB(g) \leftarrow A(g) + B(g)$
 $\frac{1}{123} = \frac{1}{123} + \frac{1}{13} = \frac{4}{3}$
 $(\Sigma n)_{n',n} = \frac{2}{3} + \frac{1}{3} + \frac{1}{3} = \frac{4}{3}$
 $K_p = \frac{P_n P_n}{P_{AB}} = \frac{1/3}{4/3} \frac{P/1/3}{4/3} \frac{P}{p} = \frac{1}{8}P$
 $P = 8K_p$
Example : 17 The total pressure observed at equilibrium in the dissociation of solid ammonium carbamate at a certain
temperature is 2.0 *atm*. The equilibrium constant K_p is
(a) 4.185 (b) 1.185 (c) 2.276 (d) 1.072
Solution: (b) $NH_a COONH_2(s) = 2NH_1(g) + CO_2(g)$
 $\frac{1}{2}r^{p} = \frac{1}{2}r^{2}$
 $K_p = P_{BH_1}^{2}P_{CO_2} = (\frac{2}{3}P)^{\frac{3}{3}}(\frac{1}{3}P) = \frac{4}{27}P^3 = \frac{4}{27}\times(2)^3 = 1.185$
Example : 18 At the equilibrium of the reaction N_2O_4 (g) $\Rightarrow 2NO_2(g)$, the observed molar mass of N_2O_4 is 77.70 g. The
percentage dissociation of N_2O_4 is
(a) 2.84 (b) 46.7 (c) 22.4 (d) 18.4
Solution: (d) $a = \frac{M_{T_1} - M_{obs}}{M_{obs}(n-1)}$; Molar mass of $N_2O_4 = 92 g \mod^{-1}$
Here, $n = 2$; $a = \frac{92.00 - 77.30}{77.70(2-1)} = 0.184 = 18.4\%$
Example : 19 In the equilibrium $H_2O(g) = H_2(g) + \frac{1}{2}O_2(g)$, the extent of dissociation of water when $p = 1$ *atm* and
 $K = 2.08 \times 10^{-3}$ is approximately
(a) 2.86 (b) 0.2% (c) 20% (c) 20% (d) 1%
Solution: (a) For the equilibrium $H_2O(g) = H_2(g) + \frac{1}{2}O_2(g)$
 $K_p = \frac{a^{3/2}P^{1/2}}{\sqrt{2}}P = 1$ *atm*
 $a = (\sqrt{2}K_p)^{3/1} = 0.0305 = 2\%$
8.7 Factors which Change the State of Equilibrium : Lo-Chatelier's Principle.

Le-Chatelier and Braun (1884), French chemists, made certain generalizations to explain the effect of changes in concentration, temperature or pressure on the state of system in equilibrium. When a system is

subjected to a change in one of these factors, the equilibrium gets disturbed and the system readjusts itself until it returns to equilibrium. The generalization is known as *Le-Chatelier's principle*. It may stated as :

"Change in any of the factors that determine the equilibrium conditions of a system will shift the equilibrium in such a manner to reduce or to counteract the effect of the change."

The principle is very helpful in predicting *qualitatively* the effect of change in concentration, pressure or temperature on a system in equilibrium. *This is applicable to all physical and chemical equilibria*.

(1) **Effect of change of concentration** : According to Le-Chatelier's principle, "If concentration of one or all the reactant species is increased, the equilibrium shifts in the forward direction and more of the products are formed. Alternatively, if the concentration of one or all the product species is increased, the equilibrium shifts in the backward direction forming more reactants."

Thus,

Increase in concentration of any of the reactants $\xrightarrow{Shifts the}_{equilibrium to}$ Forward direction Increase in concentration of any of the products $\xrightarrow{Shifts the}_{equilibrium to}$ Backward direction

(2) **Effect of change of temperature** : According to Le-Chatelier's principle, "If the temperature of the system at equilibrium is increased (heat is supplied), the equilibrium will shift in the direction in which the added heat is absorbed. In other words, the equilibrium will shift in the direction of **endothermic reaction** with increase in temperature. Alternatively, the decrease in temperature will shift the equilibrium towards the direction in which heat is produced and, therefore, will favour **exothermic reaction**."

Thus,

 Increase in temperature
 Shifts the equilibrium in the direction of
 Endothermic reaction

 Decrease in temperature
 Shifts the equilibrium in the direction of
 Exothermic reaction

(3) **Effect of change of pressure** : Pressure has hardly effect on the reactions carried in solids and liquids. However, it does influence the equilibrium state of the reactions that are carried in the gases. The effect of pressure depends upon the number of moles of the reactants and products involved in a particular reaction. According to Le-Chatelier's principle, *"Increase in pressure shifts the equilibrium in the direction of decreasing gaseous moles. Alternatively, decrease in pressure shifts the equilibrium in the direction of increasing gaseous moles and pressure has no effect if the gaseous reactants and products have equal moles."*

Thus,

 Increase in pressure
 Shifts the equilibrium in the direction of
 Decreasing gaseous moles

 Decrease in pressure
 Shifts the equilibrium in the direction of
 Increasing gaseous moles

(4) **Effect of volume change** : We know that increase in pressure means decrease in volume, so the effect of change of volume will be exactly reverse to that of pressure. Thus, "*decreasing the volume of a mixture of gases at equilibrium shifts the equilibrium in the direction of decreasing gaseous moles while increasing the volume shifts the equilibrium in the direction of moles.*"

Thus,

 Increase in volume
 Shifts the equilibrium in the direction of
 Increasing gaseous moles

 Decrease in volume
 Shifts the equilibrium in the direction of
 Decreasing gaseous moles

(5) **Effect of catalyst** : Catalyst has no effect on equilibrium. This is because, catalyst favours the rate of forward and backward reactions equally. Therefore, the ratio of the forward to reverse rates remains same and no net change occurs in the relative amount of reactants and products present at equilibrium. Thus, a catalyst does not affect the position of the equilibrium. It simply helps to achieve the equilibrium quickly. It may also be noted that a catalyst has no effect on the equilibrium composition of a reaction mixture.

Thus.

Catalyst does not shift the equilibrium in any direction

(6) Effect of addition of inert gas : The addition of an inert gas (like helium, neon, etc.) has the following effects on the equilibrium depending upon the conditions :

(i) Addition of an inert gas at constant volume : When an inert gas is added to the equilibrium system at constant volume, then the total pressure will increase. But the concentrations of the reactants and products (ratio of their moles to the volume of the container) will not change. Hence, under these conditions, there will be no effect on the equilibrium.

(ii) Addition of an inert gas at constant pressure : When an inert gas is added to the equilibrium system at constant pressure, then the volume will increase. As a result, the number of moles per unit volume of various reactants and products will decrease. Hence, the equilibrium will shift in a direction in which there is increase in number of moles of gases.

Thus,

Addition of an inert gas $\xrightarrow{V=cons \tan t}$ No effect on the equilibrium. Addition of an inert gas $\xrightarrow{P = cons \tan t}_{Shifts the equilibrium in the direction of}$ Increasing gaseous moles.

8.8 Applications of Le-Chatelier's Principle.

The Le-Chateliers principle has a great significance for the chemical, physical systems and in every day life in a state of equilibrium. Let us discuss in brief a few applications.

(1) Applications to the chemical equilibrium : With the help of this principle, most favourable conditions for a particular reaction can be predicted.

(i) Synthesis of ammonia (Haber's process): $N_2 + 3H_2 \approx 2NH_3 + 23kcal$ (exothermic) 1 vol 3 vol 2 vol

(a) High pressure ($\Delta n < 0$) (b) Low temperature (c) Excess of N_2 and H_2 (d) Removal of NH_3 favours forward reaction.

(ii) Formation of sulphur trioxide : $2SO_2 + O_2 = 2SO_3 + 45 \ kcal$ (exothermic) $\frac{2}{2 \ vol} \frac{1}{2 \ vol}$

(a) High pressure ($\Delta n < 0$) (b) Low temperature (c) Excess of SO ₂ and O ₂, favours the reaction in forward direction.

(iii) Synthesis of nitric oxide : $N_2 + O_2_{1 \text{ vol}} \approx 2NO_{2 \text{ vol}} - 43.2 \text{ kcal}$ (endothermic)

(a) High temperature (b) Excess of N_2 and O_2 (c) Since reaction takes place without change in volume i.e., $\Delta n = 0$, pressure has no effect on equilibrium.

(iv) Formation of nitrogen dioxide : $2NO_{2 vol} + O_{2} \approx 2NO_{2} + 27.8 Kcal$

(a) High pressure (b) Low temperature (c) Excess of *NO* and *O*₂ favours the reaction in forward direction.

(v) Dissociation of phosphours pentachloride : $PCl_5 \Rightarrow PCl_3 + Cl_2 - 15 \ kcal$

(a) Low pressure or high volume of the container, $\Delta n > 0$ (b) High temperature (c) Excess of PCl_{5} .

(2) **Applications to the physical equilibrium** : Le-Chatelier's principle is applicable to the physical equilibrium in the following manner;

(i) *Melting of ice (lce – water system)* : $\lim_{(Greater Volume)} \Rightarrow \underset{(Lesser Volume)}{Water - x kcal}$

(In this reaction volume is decreased from 1.09 c.c. to 1.01 c.c. per gm.)

(a) At high temperature more water is formed as it absorbs heat. (b) At high pressure more water is formed as it is accompanied by decrease in volume.(c) At higher pressure, melting point of ice is lowered, while boiling point of water is increased.

(ii) Melting of sulphur : $S_{(s)} \Rightarrow S_{(l)} - x \ k \ cal$

(This reaction accompanies with increase in volume.)

(a) At high temperature, more liquid sulphur is formed. (b) At higher pressure, less sulphur will melt as melting increases volume.(c) At higher pressure, melting point of sulphur is increased.

(iii) **Boiling of water** (water-water vapour system): Water = Water Vapours - x kcal(Higher volume)

(It is accompanied by absorption of heat and increase in volume.)

(a) At high temperature more vapours are formed.(b) At higher pressure, vapours will be converted to liquid as it decreases volume.(c) At higher pressure, boiling point of water is increased (principle of pressure cooker).

(iv) *Solubility of salts* : If solubility of a salt is accompanied by absorption of heat, its solubility increases with rise in temperature; e.g., NH_4Cl , K_2SO_4 , KNO_3 etc. $KNO_{3(x)} + (aq) \longrightarrow KNO_{3(aq)} - x \ kcal$

On the other hand if it is accompanied by evolution of heat, solubility decreases with increase in temperature; e.g., $CaCl_2, Ca(OH)_2, NaOH$, KOH etc. $Ca(OH)_{2(s)} + (aq) \longrightarrow Ca(OH)_{2(aq)} + x \ kcal$

(3) **Application in every day life** : We have studied the application of the Le-Chatelier's principle to some equilibria involved in the physical and chemical systems. In addition to these, the principle is also useful to explain certain observations which we come across in every day life. A few out of them are discussed below,

(i) *Clothes dry quicker in a windy day*: When wet clothes are spread on a stand, the water evaporates and the surrounding air tends to get saturated thus hampering the process of drying. On a windy day when breeze blows, the nearby wet air is replaced by dry air which helps the process of evaporation further. Thus, clothes dry quicker when there is a breeze.

(ii) *We sweat more on a humid day*: The explanation is the same as given above. In a humid day, the air is already saturated with water vapours. This means that the water that comes out of the pores of the body as sweat does not vaporise. This will result in greater sweating in a humid day.

(iii) *Carriage of oxygen by haemoglobin in blood* : The haemoglobin (*Hb*) in red corpuscles of our blood carries oxygen to the tissues. This involves the equilibrium, $Hb(s) + O_2(g) = HbO_2(s)$

The blood that is in equilibrium with the oxygen of the air in the lungs finds a situation in the tissues where the partial pressure of oxygen is low. According to Le-Chatelier's principle, the equilibrium shifts towards the left so that some of the oxyhaemoglobin changes to haemoglobin giving up the oxygen. When the blood returns to the lungs, the partial pressure of the oxygen is higher and the equilibrium favours the formation of more oxyhaemoglobin.

(iv) **Removal of carbon dioxide from the tissues by blood**: Blood removes CO_2 from the tissues. The equilibrium is, $CO_2(g) + H_2O(l) = H_2CO_3(aq) = H^+(aq) + HCO_3^-(aq)$

Carbon dioxide dissolves in the blood in the tissues since the partial pressure of CO_2 is high. However in the lungs, where the partial pressure of CO_2 is low, it is released from the blood.

(v) *Sweet substances cause tooth decay* : Tooth enamel consists of an insoluble substance called hydroxyapatite, $Ca_5(PO_4)_3OH$. The dissolution of this substance from the teeth is called *demineralization* and its formation is called *remineralization*. Even with the healthy teeth, there is an equilibrium in the mouth as

$$Ca_5(PO_4)_3OH(s) \stackrel{exothermic}{\underset{endothermic}{\overset{exothermic}{\overset{exothermic}{\overset{endothermic}{\overset{en$$

When sugar substances are taken, sugar is absorbed on teeth and gets fermented to give H⁺ ions. The H⁺ ions produced distrub the equilibrium by combining with OH⁻ to form water and with PO_4^{3-} to form HPO_4^{2-} . Removal of products cause the equilibrium to shift towards right and therefore, $Ca_5(PO_4)_3 OH$ dissolves causing tooth decay.

8.9 Relation between vapour density and degree of dissociation.

In the following reversible chemical equation. $A \rightleftharpoons$ vВ 0 Initial mol 1 At equilibrium (1-x)x = degree of dissociation VX Number of moles of A and B at equilibrium = 1 - x + yx = 1 + x(y - 1)If initial volume of 1 mole of *A* is *V*, then volume of equilibrium mixture of *A* and *B* is, = [1 + x(y - 1)]VMolar density before dissociation, $D = \frac{molecular \ weight}{volume} = \frac{m}{V}$ Molar density after dissociation, $d = \frac{m}{[1 + x(y-1)]V}$; $\frac{D}{d} = [1 + x(y-1)]$; $x = \frac{D-d}{d(y-1)}$ y is the number of moles of products from one mole of reactant. $\frac{D}{d}$ is also called *Van't Hoff factor*. In terms of molecular mass, $x = \frac{M-m}{(v-1)m}$; Where M = Initial molecular mass, m = molecular mass at equilibrium Thus for the equilibria (I) $PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}, y = 2$ (II) $N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}, y = 2$ (III) $2NO_2 \rightleftharpoons N_2O_4, y = \frac{1}{2}$

 $\therefore x = \frac{D-d}{d}$ (for I and II) and $x = \frac{2(d-D)}{d}$ (for III)

Also $D \times 2 =$ Molecular weight (theoretical value) $d \times 2 =$ Molecular weight (abnormal value) of the mixture

Assignment

Level-1

1.	A reversible reaction is one which		
1.	(a) Proceeds in one direction	(b)	Proceeds in both directions
	(c) Proceeds spontaneously	. ,	All the statements are wrong
2.	Which of the following is a characteristic of a reversible reaction		
	(a) Number of moles of reactants and products are equal	(b)	It can be influenced by a catalyst
	(c) It can never proceed to completion	(d)	None of the above
3.	In a reversible reaction both side rate of reactions are		
	(a) Same (b) Different	(c)	One side more (d) Not definite
4.	Which of the following reactions is reversible		
	(a) $H_2 + I_2 \rightarrow 2HI$		$H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2H_2O$
	(c) $NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl$	(d)	$Fe + S \rightarrow FeS$
5.	Which one is reversible process		
	(a) Melting of ice at $10^{\circ} C$	(b)	Mixing of two gases by diffusion
	(c) Evaporation of water at $100 \circ C$ and 1 atm pressure	(d)	None of these
6.	All reactions which have chemical disintegration		
	(a) Is reversible		Is reversible and endothermic
-	(c) Is exothermic		Is reversible or irreversible and endothermic or exothermic
7.	Amongst the following chemical reactions the irreversible reaction (a) $H_2 + I_2 \rightarrow 2HI$		$A_{\alpha}N_{\alpha} + N_{\alpha}C_{1} + A_{\alpha}C_{1} + N_{\alpha}N_{\alpha}$
			$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
	(c) $CaCO_3 \rightarrow CaO + CO_2$		$O_2 + 2SO_2 \rightarrow 2SO_3$
8.	The reaction, $3Fe(s)+4H_2O = Fe_3O_4(s)+4H_2(g)$ is reversible i	f it car	ried out
	(a) At constant pressure (b) At constant temperature		In an open vessel (d) In a closed vessel
9.	Amongst the following chemical reactions the reversible reaction		
	(a) $FeCl_3 + 3H_2O \rightarrow Fe(OH)_3 + 6HCl$	(b)	$NaCl + H_2SO_4 \rightarrow NaHSO_4 + HCl \uparrow$
	(c) (a) and (b) both	(d)	None of these
	Leve	-2	
10.	An example of reversible reaction is		
	(a) $AgNO_3(aq.) + HCl(aq.) \rightarrow AgCl(s) + HNO_3(aq.)$		$NaOH + CH_3COOH \rightarrow CH_3COONa + H_2O$
	(c) $2Na + 2H_2O \rightarrow 2NaOH + H_2$	(d)	$Pb(NO_3)_2 + 2NaI \rightarrow PbI_2 + 2NaNO_3$
11.	The given reaction, $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$ is irreverse	ible be	cause
	(a) <i>NaCl</i> is sparingly soluble in water	(b)	$AgNO_3$ and $NaCl$ are completely ionised
	(c) <i>AgCl</i> is slightly soluble in water		(d) None of these
12.	Which is incorrect for a reversible reaction		
	(a) The reaction is never completed		
	(b) The reactants are present in the initial stage but after that re	actants	and products are always present in the reaction mixture
	(c) At equilibrium only products are present		
10	(d) When the reaction is carried out in closed space it attains equation is the direction of a recentible meeting when are after up of the reaction of the rea	-	
13.	What is the direction of a reversible reaction when one of the pro (a) Forward direction (b) Backward direction		The reaction removed (d) All of these
14.	The reaction which proceeds in the forward direction is	(L)	The reaction stops (u) All of these
	(a) $SnCl_4 + Hg_2Cl_2 \rightarrow SnCl_2 + 2HgCl_2$	(b)	$NH_4Cl + NaOH \rightarrow H_2O + NH_3 + NaCl$
	(c) $Mn^{2+} + 2H_2O + Cl_2 \rightarrow MnO_2 + 4H^+ + 2Cl^-$		$S_4 O_6^{} + 2I^- \rightarrow 2S_2 O_3^{2-} + I_2$
	$(c) mn \pm 2m_2 0 + cr_2 \rightarrow mn O_2 + 4n \pm 2cr$	(u)	$S_4 O_6 + 2I \rightarrow 2S_2 O_3 + I_2$

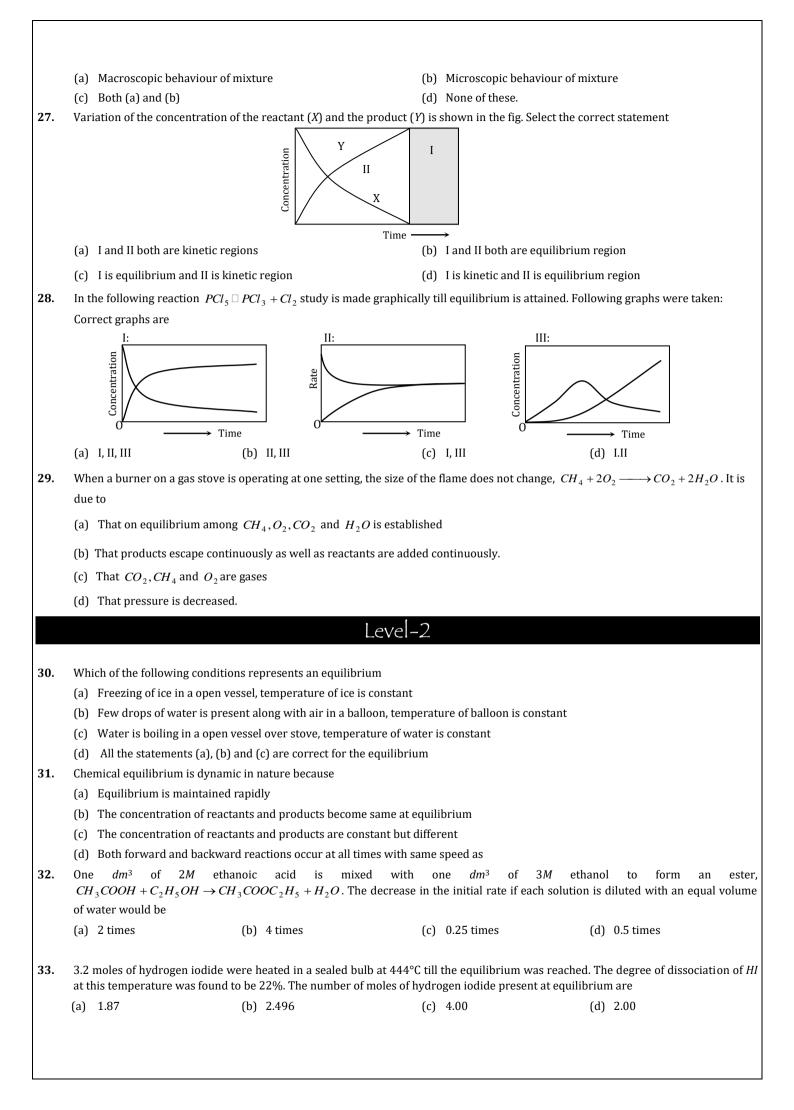
Level-1

- **15.** In any chemical reaction, equilibrium is supposed to be establish when
 - (a) Mutual opposite reactions undergo
 - (b) Concentration of reactants and resulting products are equal
 - (c) Velocity of mutual reactions become equal
 - (d) The temperature of mutual opposite reactions becomes equal
- **16.** For reversible reaction $A \Rightarrow B$, what is true

(a)
$$\frac{d[A]}{dt} = \frac{d[B]}{dt}$$
 (b) $\frac{dx}{dt} = \frac{K_p}{K_c}$ (c) $\frac{d[A]}{d[B]} = K$ (d) None of these

- 17.When rate of forward reaction becomes equal to backward reaction, this state is termed as
(a) Chemical equilibrium(b) Reversible state(c) Equilibrium
- **18.** In chemical reaction $A \neq B$, the system will be known in equilibrium when
 - (a) A completely changes to B
 - (b) 50% of A changes to B

19.


- (c) The rate of change of *A* to *B* and *B* to *A* on both the sides are same
- (d) Only 10% of *A* change to *B*
- Select the correct statement from the following
- (a) Equilibrium constant changes with addition of catalyst
- (b) Catalyst increases the rate of forward reaction
- (c) The ratio of mixture at equilibrium does not change by catalyst
- (d) Catalyst are active only in solution
- **20.** A chemical reaction is at equilibrium when
 - (a) Reactants are completely transformed into products
 - (b) The rates of forward and backward reactions are equal
 - (c) Formation of products is minimised
 - (d) Equal amounts of reactants and products are present
- **21.** In the chemical reaction $N_2 + 3H_2 = 2NH_3$ at equilibrium point
 - (a) Equal volumes of N_2 and H_2 are reacting
 - (b) Equal masses of N_2 and H_2 are reacting
 - (c) The reaction has stopped
 - (d) The same amount of ammonia is formed as is decomposed into N_2 and H_2
- 22. What would happen to a reversible reaction at equilibrium when an inert gas is added while the volume remains unchanged
 - (a) More of the product will be formed

(b) Less of the product will be formed

(d) All of these

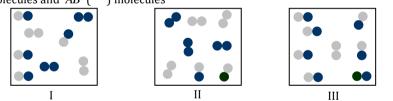
(c) More of the reactants will be formed

- (d) It remains unaffected
- 23. Which of the following statements regarding a chemical equilibrium is wrong
 - (a) An equilibrium can be shifted by altering the temperature or pressure
 - (b) An equilibrium is dynamic
 - (c) The same state of equilibrium is reached whether one starts with the reactants or the products
 - (d) The forward reaction is favoured by the addition of a catalyst
- 24. In a chemical reaction equilibrium is established when
 - (a) Opposing reaction ceases
 - (b) Concentration of reactants and products are equal
 - (c) Velocity of opposing reaction is the same as that of forward reaction
 - (d) Reaction ceases to generate heat
- **25.** In the given reaction $N_2 + O_2 \rightleftharpoons 2NO$, equilibrium means that
 - (a) Concentration of reactants is changing where as concentration of products is constant
 - (b) Concentration of all substances is constant
 - (c) Concentration of reactants is constant where as concentration of products is changing
 - (d) Concentration of all substance is changing
- **26** Study of the equilibrium of the type $CO_2(g) + H_2(g) \square CO(g) + H_2O(g)$ is concerned with the

34. For the reaction
$$2N_2O_4 \rightarrow 4NO_2$$
 given that $\frac{-d}{dt}(N_2O_4) = K$ and $\frac{d}{dt}(NO_2) = K'$, then

(a)
$$K' = 2K$$
 (b) $K' = K$ (c) $2K' = K$ (d) None of these

- **35.** Which is false
 - (a) The greater the concentration of the substances involved in a reaction, the lower the speed of the reaction
 - (b) The point of dynamic equilibrium is reached when the reaction rate in one direction just balances the reaction rate in the opposite direction
 - (c) The dissociation of weak electrolyte is a reversible reaction
 - (d) The presence of free ions facilitates chemical changes
- 36. Assertion (*A*): The equilibrium constant is fixed and is the characteristic of any given chemical reaction at a specified temperature.Reason (*R*): The composition of the final equilibrium mixture at a particular temperature depends upon the starting amount of reactants.
 - (a) Both *A* and *R* are true and *R* is a correct explanation of *A*
 - (b) Both *A* and *R* are true but *R* is not a correct explanation of *A*
 - (c) *A* is true but *R* is false
 - (d) Both A and R are false
 - (e) A is false but R is true


37. For a reaction of the type $aA + bB \Rightarrow$ Products, the $\frac{d[A]}{dt}$ is equal to....

(a)
$$-\frac{d[B]}{dt}$$
 (b) $-\frac{1}{b} \times \frac{d[B]}{dt}$ (c) $-\frac{a}{b} \times \frac{d[B]}{dt}$ (d) $-\frac{b}{a} \times \frac{d[B]}{dt}$

38. Which one of the following equation is correct for the reaction : $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$

(a)
$$\frac{3d[H_2]}{dt} = \frac{2d[N_2]}{dt}$$
 (b) $\frac{2d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt}$ (c) $\frac{2d[NH_3]}{dt} = \frac{-3d[H_2]}{dt}$ (d) $\frac{3d[NH_3]}{dt} = \frac{-2d[H_2]}{dt}$

39. The reaction $A_2 + B_2 \square 2AB$ has an equilibrium constant $K_c = 4$. The following pictures represent reaction mixtures that contain A_2 (molecules, B_2 (molecules and AB (molecules

In which case (s) system is in equilibrium

(a) I (b) I, II

(c) II, III

(d) I, II, III

40. A reaction reaches a state of chemical equilibrium only when

- (a) The reactants and the products are reacting
- (b) The concentrations of the reactants and products become equal
- (c) The products react together at the same rate at which they are formad
- (d) All the reactants and the products are in the same state of matter

Level-1

41. The active mass of a reactant is

- (a) Its gram molecular weight (b) Its equivalent weight
- (c) Per litre number of moles (d) None of these

		_	_	_		
42.		n is proportional to its active mass,				
40	(a) Law of mass action	(b) Le- chatelier principle	(c)	Faraday law of electrolysis	(d)	Law of constant proportion
43.	The law of mass action was enu	-	(-)	D'ath also	(1)	Crack and
4.4	(a) Guldberg and Waage	(b) Bodenstein		Birthelot	(a)	Graham
44.	(a) Equilibrium constant	s that the rate of chemical reaction(b) Properties of reactants		Volume of apparatus	(4)	Concentration of reactant
45.		re solution the active mass of urea			(u)	concentration of reactant
45.	(a) 0.2 mol/litre	(b) 0.06 mol/litre		0.4 mol/litre	(d)	0.08 mol/litre
					(u)	
46.		, for the reaction $2A + B \longrightarrow pr$			(1)	
47	(a) Rate = $K[A][B]$	(b) Rate = $K[A]^2[B]$		Rate = $K[A][B]^2$	(a)	Rate = $K[A]^{1/2}[B]$
47.	(a) Molarities of the reactants	, the rate of a reaction is directly pr	-	Normalities of the reactant	a	
	(c) Molalities of the reactants			Mole fractions of the reacta		
48.		of substance present in unit volum			ints	
10.	(a) Activity	(b) Normal solution		Molar concentration	(d)	Active mass
49.	The active mass of 64 gm of <i>HI</i> i		(-)		Ċ	
	(a) 2	(b) 1	(c)	5	(d)	0.25
50.	The thermal decomposition of p	ootassium chlorate given as 2KClO	$_3 \rightarrow 2$	$2KCl + 3O_2$, law of mass action	tion	
	(a) Cannot be applied			Can be applied		
	(c) Can be applied at low temp	perature		Can be applied at high tem	p, and	d pressure
51.		litre solution, the active mass of ur		11 0	1,	1
	(a) 0.2	(b) 0.06		0.4	(d)	0.08
52.	Active mass is given as, $\{If f = af f \}$	ctivity coefficient & <i>C</i> _M = Molarity}				
	(a) $a = f C_M$		(b)	$a = r C_M$		
	(c) Amount of substance per u	nit Volume	(d)	Number of g mol per 100 lit	tre	
53.	Unit of active mass is					
	(a) $\frac{M}{litre}$	(b) <i>M. litre</i>	(c)	M. litre-2	(d)	None of these
	litre	. 1	,			
		01/0	1			
		Level	-1			
		LCVCI	~			
54.	For the system $3A + 2B = C$, the	e expression for equilibrium consta				
54.	For the system $3A + 2B \Rightarrow C$, the					
54.	r 17 1	e expression for equilibrium consta	nt is	[4] ³ [p] ²		
54.	For the system $3A + 2B \Rightarrow C$, the (a) $\frac{[3A][2B]}{C}$	e expression for equilibrium consta	nt is	$\underline{[A]^3[B]^2}$	(d)	$\frac{[C]}{[.1]^{3}[n]^{2}}$
54.	(a) $\frac{[3A][2B]}{C}$	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$	nt is (c)	t		$\frac{[C]}{[A]^3[B]^2}$
54. 55 <i>.</i>	(a) $\frac{[3A][2B]}{C}$	e expression for equilibrium consta	nt is (c)	t		
	(a) $\frac{[3A][2B]}{C}$	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$ s a reversible reaction. It appears i	nt is (c)	t		
	(a) $\frac{[3A][2B]}{C}$ A + B = AB (in gaseous state) is	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$ s a reversible reaction. It appears i	nt is (c)	c ilibrium that 0.4 mole of <i>AB</i>		rmed when A and B each are
	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$ s a reversible reaction. It appears i centage of <i>A</i> changes to <i>AB</i>	nt is (c) n equ (c)	c ilibrium that 0.4 mole of <i>AB</i> 60	is fo	rmed when A and B each are
55.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$ s a reversible reaction. It appears i centage of <i>A</i> changes to <i>AB</i> (b) 40 ssed in the following terms in the case	nt is (c) n equ (c) ılculat	c ilibrium that 0.4 mole of <i>AB</i> 60	is fo	rmed when A and B each are
55.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$ s a reversible reaction. It appears i centage of <i>A</i> changes to <i>AB</i> (b) 40 ssed in the following terms in the ca itre	nt is (c) n equ (c) ilculat (b)	c ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant	is for (d)	rmed when <i>A</i> and <i>B</i> each are
55.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express (a) Number of molecules per line (c) Number of gram equivalent	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$ s a reversible reaction. It appears i centage of <i>A</i> changes to <i>AB</i> (b) 40 ssed in the following terms in the ca itre	nt is (c) n equ (c) (lculat (b) (d)	c ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv	is fo (d)	rmed when <i>A</i> and <i>B</i> each are 4 per litre
55 <i>.</i> 56.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express (a) Number of molecules per line (c) Number of gram equivalent	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it reaction in the case of the concentration of each $B \Rightarrow C + D$ the concentration of each	nt is (c) n equ (c) (lculat (b) (d)	c ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv	is fo (d)	rmed when <i>A</i> and <i>B</i> each are 4 per litre
55 <i>.</i> 56.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express (a) Number of molecules per line (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equil	e expression for equilibrium consta (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it re t per litre B = C + D the concentration of each librium constant <i>K</i> will be	nt is (c) n equ (c) (c) (b) (d) <i>C</i> and	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv I <i>D</i> at equilibrium is 0.4 mole	d is for (d) valent e/litr	rmed when <i>A</i> and <i>B</i> each are 4 per litre e and concentration of A and
55 <i>.</i> 56.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express (a) Number of molecules per line (c) Number of gram equivalent In the reversible reaction $A + B$	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it reaction in the case of the concentration of each $B \Rightarrow C + D$ the concentration of each	nt is (c) n equ (c) (lculat (b) (d)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv I <i>D</i> at equilibrium is 0.4 mole	d is for (d) valent e/litr	rmed when <i>A</i> and <i>B</i> each are 4 per litre
55 <i>.</i> 56.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much perce (a) 20 Concentration of a gas is express (a) Number of molecules per lis (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equilation (a) $\frac{4}{9}$	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it per litre $B \Rightarrow C + D$ the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$	nt is (c) n equ (c) ulculat (b) (d) <i>C</i> and (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv d <i>D</i> at equilibrium is 0.4 mole	d) (d) ralent e/litr (d)	 [A] [B] rmed when A and B each are 4 per litre e and concentration of A and None of these
55 <i>.</i> 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much perce (a) 20 Concentration of a gas is express (a) Number of molecules per lis (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equilit (a) $\frac{4}{9}$ On a given condition, the equility	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it reaction of the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ ullibrium concentration of <i>HI</i> , <i>H</i>	nt is (c) n equ (c) ulculat (b) (d) <i>C</i> and (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv d <i>D</i> at equilibrium is 0.4 mole	d) (d) ralent e/litr (d)	 [A] [B] rmed when A and B each are 4 per litre e and concentration of A and None of these
55 <i>.</i> 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much perce (a) 20 Concentration of a gas is express (a) Number of molecules per lis (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equilit (a) $\frac{4}{9}$ On a given condition, the equility	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears is centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it reaction the following terms in the case it experiments in the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ ullibrium concentration of <i>HI</i> , <i>H</i> action $H_2 + I_2 = 2HI$ will be	nt is (c) n equ (c) (c) (d) (d) (c) (c) 2 and	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0	(d) (d) ralent e/litr (d)	[A] [B] rmed when A and B each are 4 • per litre e and concentration of A and None of these mole/litre respectively. The
55 <i>.</i> 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much perce (a) 20 Concentration of a gas is express (a) Number of molecules per lis (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equilit (a) $\frac{4}{9}$ On a given condition, the equility	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it reaction of the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ ullibrium concentration of <i>HI</i> , <i>H</i>	nt is (c) n equ (c) ulculat (b) (d) <i>C</i> and (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0	d) (d) ralent e/litr (d)	[A] [B] rmed when A and B each are 4 • per litre e and concentration of A and None of these mole/litre respectively. The
55 <i>.</i> 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express (a) Number of molecules per lift (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equiling (a) $\frac{4}{9}$ On a given condition, the equilibrium constant for the reaction (a) 64	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears is centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it reaction the following terms in the case it experiments in the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ ullibrium concentration of <i>HI</i> , <i>H</i> action $H_2 + I_2 = 2HI$ will be	nt is (c) n equ (c) (d) (d) (c) 2 and (c) 2 (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0 8	(d) (d) ralent e/litr (d)	[A] [B] rmed when A and B each are 4 • per litre e and concentration of A and None of these mole/litre respectively. The
55. 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much perce (a) 20 Concentration of a gas is express (a) Number of molecules per lift (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equil (a) $\frac{4}{9}$ On a given condition, the equilibrium constant for the reaction (a) 64 For the system $2A(g) + B(g) \Rightarrow$	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it per litre R = C + D the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ utilibrium concentration of <i>HI</i> , <i>H</i> faction $H_2 + I_2 = 2HI$ will be (b) 12 3C(g). The expression for equilibrium	nt is (c) n equ (c) (lculat (b) (d) (c) (c) (c) (c) (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0 8 onstant <i>K</i> is	(d) (d) ralent e/litr (d)).10 1 (d)	[A] [B] rmed when A and B each are 4 e per litre e and concentration of A and None of these mole/litre respectively. The 0.8
55. 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much perce (a) 20 Concentration of a gas is express (a) Number of molecules per lift (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equil (a) $\frac{4}{9}$ On a given condition, the equilibrium constant for the reaction (a) 64 For the system $2A(g) + B(g) \Rightarrow$	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it per litre R = C + D the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ utilibrium concentration of <i>HI</i> , <i>H</i> faction $H_2 + I_2 = 2HI$ will be (b) 12 3C(g). The expression for equilibrium	nt is (c) n equ (c) (lculat (b) (d) (c) (c) (c) (c) (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0 8 onstant <i>K</i> is	(d) (d) ralent e/litr (d)).10 1 (d)	[A] [B] rmed when A and B each are 4 e per litre e and concentration of A and None of these mole/litre respectively. The 0.8
55. 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much perce (a) 20 Concentration of a gas is express (a) Number of molecules per lift (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equil (a) $\frac{4}{9}$ On a given condition, the equilibrium constant for the reaction (a) 64 For the system $2A(g) + B(g) \Rightarrow$	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears is centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it reaction the following terms in the case it experiments in the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ ullibrium concentration of <i>HI</i> , <i>H</i> function $H_2 + I_2 = 2HI$ will be (b) 12	nt is (c) n equ (c) (lculat (b) (d) (c) (c) (c) (c) (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0 8	(d) (d) ralent e/litr (d)).10 1 (d)	[A] [B] rmed when A and B each are 4 • per litre e and concentration of A and None of these mole/litre respectively. The
55. 56. 57.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express (a) Number of molecules per lift (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equiling (a) $\frac{4}{9}$ On a given condition, the equilibrium constant for the reaction (a) 64 For the system $2A(g) + B(g) =$ (a) $\frac{[2A] \times [B]}{[3C]}$	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it per litre R = C + D the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ utilibrium concentration of <i>HI</i> , <i>H</i> faction $H_2 + I_2 = 2HI$ will be (b) 12 3C(g). The expression for equilibrium	nt is (c) n equ (c) llculat (b) (d) C and (c) (c) (c) ium c (c)	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0 8 onstant <i>K</i> is $\frac{[3C]}{[2A] \times [B]}$	(d) (d) ralent e/litr (d)).10 1 (d) (d)	$\begin{bmatrix} C \end{bmatrix}^{3}$ rmed when <i>A</i> and <i>B</i> each are 4 e per litre e and concentration of A and None of these mole/litre respectively. The 0.8 $\frac{[C]^{3}}{[A]^{2} \times [B]}$
55. 56. 57. 58.	(a) $\frac{[3A][2B]}{C}$ $A + B \Rightarrow AB$ (in gaseous state) is taken one mole. How much percent (a) 20 Concentration of a gas is express (a) Number of molecules per lift (c) Number of gram equivalent In the reversible reaction $A + B$ B is 0.6 mol/litre, then the equiling (a) $\frac{4}{9}$ On a given condition, the equilibrium constant for the reaction (a) 64 For the system $2A(g) + B(g) =$ (a) $\frac{[2A] \times [B]}{[3C]}$	e expression for equilibrium constat (b) $\frac{[C]}{[3A][2B]}$ is a reversible reaction. It appears in centage of <i>A</i> changes to <i>AB</i> (b) 40 used in the following terms in the case it per litre $B \Rightarrow C + D$ the concentration of each librium constant <i>K</i> will be (b) $\frac{2}{9}$ utilibrium concentration of <i>HI</i> , <i>H</i> function $H_2 + I_2 \Rightarrow 2HI$ will be (b) 12 3C(g). The expression for equilibrium (b) $\frac{[A]^2 \times [B]}{[C]^3}$	nt is (c) n equ (c) dculat (b) (d) <i>C</i> and (c) 2 <i>and</i> (c) (c) ium co (c) ium co	ilibrium that 0.4 mole of <i>AB</i> 60 ion of equilibrium constant Number of grams per litre Number of molecules equiv 1 <i>D</i> at equilibrium is 0.4 mole $\frac{3}{9}$ <i>I I</i> ₂ are 0.80, 0.10, and 0 8 onstant <i>K</i> is $\frac{[3C]}{[2A] \times [B]}$	(d) (d) ralent e/litr (d)).10 1 (d) (d)	$\begin{bmatrix} C \end{bmatrix}^{3}$ rmed when <i>A</i> and <i>B</i> each are 4 e per litre e and concentration of A and None of these mole/litre respectively. The 0.8 $\frac{[C]^{3}}{[A]^{2} \times [B]}$

(c) Remains undificted (d) First increases and then decreases 61. The equilibrium constant for the given raction $H_2 = I_1 = 2H$ is correctly given by expression (a) $K_z = \begin{bmatrix} I_z \\ H_z \\ H_z \end{bmatrix}$ (b) $K_z = \begin{bmatrix} I_z \\ H_z \\ H_z \end{bmatrix}$ (c) $K_z = \begin{bmatrix} I_z \\ H_z \\ H_z \end{bmatrix}$ (d) $K_z = \begin{bmatrix} I_z \\ H_z \\ H_z \\ H_z \end{bmatrix}$ (e) $K_z = \begin{bmatrix} I_z \\ H_z \\ H_z \\ H_z \end{bmatrix}$ (f) $K_z = \begin{bmatrix} I_z \\ H_z H_z \\ H_z H_z \\ H_z \\$							
(a) $K_{+} = \frac{[H_{+}][L_{+}]}{[H_{+}]}$ (b) $K_{+} = \frac{[H_{+}][L_{+}]}{[2H_{+}]}$ (c) $K_{+} = \frac{[H_{+}][L_{+}]}{[H_{+}]}$ (d) $K_{+} = \frac{[H_{+}][L_{+}]}{[H_{+}][L_{+}]}$ (e) $K_{+} = \frac{[H_{+}][L_{+}]}{[H_{+}]}$ (f) $K_{+} = \frac{[H_{+}][L_{+}]}{[H_{+}][L_{+}]}$ (g) $K_{+} = \frac{[H_{+}][L_{+}]}{[H_{+}][L_{+}]}$ (f) $M_{+} = M_{+} = M$		(c) Remains unaffected		(d)	First increases and then de	creas	es
$ \begin{array}{c} \left[(1 - 1) \\ (1 - 1) \\ (1 - 1) \\ (1 - 1) \\ (2 - $	61.	The equilibrium constant for th	e given reaction $H_2 + I_2 \rightleftharpoons 2HI$ is c	corre	ctly given by expression		
$ \begin{array}{c} \left[(1 - 1) \\ (1 - 1) \\ (1 - 1) \\ (1 - 1) \\ (2 - $		$[H_2]$	$[H_2][I_2]$	()	$[H_2][I_2]$	(I)	$[HI]^2$
(a) mol kirc ⁻¹ (b) litre mol ⁻¹ (c) mol litre (d) Dimensionless 63. The equilibrium constant for the reaction $P_5 = 2P$ at 500K and 700K are 1×10^{-10} and 1×10^{-5} respectively. Given reaction will be (a) Fast (b) Slow (c) Endothermic (d) Exothermic (a) $K = \frac{[NH_3]^2}{[N_3][H_3]^3}$ (b) $K = \frac{[N_3][H_3]^3}{[N_3]_1^2}$ (c) $K = \frac{2[NH_3]}{[N_3]_2^3](L_2]}$ (d) $K = \frac{[N_2] \times 3[H_2]}{2[NH_3]_1}$ 65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25 °C. Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of PCL was heated in a 10 litre vessel as 250° C; PCL_{16(2)} \Rightarrow PCL_{3(2)} + CL_{3(2)} = A (d) 0.025 67. 250 ₃ \Rightarrow 250 ₂ + 0 ₂ in equation 2 mole of CL_2 . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 250 ₃ \Rightarrow 250 ₂ + 0 ₂ in equation 2 mole SO_3 is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 68. The equilibrium constant of the reaction $H_{3(4)} + I_{2(4)} = 2HI_{40}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) $K_{-} = \frac{[X]^{2}[Y]}{[Z]}$ (b) $K_{-} = \frac{[X][Y]^{2}}{[X_{2}]}$ (c) $K_{-} = \frac{[Z]}{[X_{2}][Y]}$ (d) $K_{-} = \frac{[Z]}{[X_{2}][Y]^{2}}$ 70. Value of K_{μ} in the reaction $H_{5}CO_{3,\mu} + CO_{3,\mu}$ is K_{μ} if $\frac{[X_{2}]^{2}}{[X_{2}]^{2}}$ (c) $K_{\mu} = \frac{P_{0(2)} \times FM_{0(0)}}{P_{0(0(2))}}$ (d) $K_{\mu} = \frac{P_{0(2)} \times P_{0(0)}}{[X_{2}][Y]^{2}}$ 71. An equilibrium constant (K_{1} in mole kinc ⁻¹ is (a) 0.04 (b) 0.08 (c) 0.016 (c) 0.16 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{1,2} + B_{0,2} + SL_{0,2} + SL_{0,2} + SL_{0,2} + SL_{0,2} + SL_{0,2} - SL_{0,2} + SL_{0,2} - S$		(a) $K_c = \frac{1}{[HI]}$	(b) $K_c = \frac{1}{[2HI]}$	(c)	$K_c = \frac{1}{[HI]^2}$	(a)	$K_c = \frac{1}{\left[H_2\right]\left[I_2\right]}$
(a) mol kirc ⁻¹ (b) litre mol ⁻¹ (c) mol litre (d) Dimensionless 63. The equilibrium constant for the reaction $P_5 = 2P$ at 500K and 700K are 1×10^{-10} and 1×10^{-5} respectively. Given reaction will be (a) Fast (b) Slow (c) Endothermic (d) Exothermic (a) $K = \frac{[NH_3]^2}{[N_3][H_3]^3}$ (b) $K = \frac{[N_3][H_3]^3}{[N_3]_1^2}$ (c) $K = \frac{2[NH_3]}{[N_3]_2^3](L_2]}$ (d) $K = \frac{[N_2] \times 3[H_2]}{2[NH_3]_1}$ 65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25 °C. Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of PCL was heated in a 10 litre vessel as 250° C; PCL_{16(2)} \Rightarrow PCL_{3(2)} + CL_{3(2)} = A (d) 0.025 67. 250 ₃ \Rightarrow 250 ₂ + 0 ₂ in equation 2 mole of CL_2 . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 250 ₃ \Rightarrow 250 ₂ + 0 ₂ in equation 2 mole SO_3 is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 68. The equilibrium constant of the reaction $H_{3(4)} + I_{2(4)} = 2HI_{40}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) $K_{-} = \frac{[X]^{2}[Y]}{[Z]}$ (b) $K_{-} = \frac{[X][Y]^{2}}{[X_{2}]}$ (c) $K_{-} = \frac{[Z]}{[X_{2}][Y]}$ (d) $K_{-} = \frac{[Z]}{[X_{2}][Y]^{2}}$ 70. Value of K_{μ} in the reaction $H_{5}CO_{3,\mu} + CO_{3,\mu}$ is K_{μ} if $\frac{[X_{2}]^{2}}{[X_{2}]^{2}}$ (c) $K_{\mu} = \frac{P_{0(2)} \times FM_{0(0)}}{P_{0(0(2))}}$ (d) $K_{\mu} = \frac{P_{0(2)} \times P_{0(0)}}{[X_{2}][Y]^{2}}$ 71. An equilibrium constant (K_{1} in mole kinc ⁻¹ is (a) 0.04 (b) 0.08 (c) 0.016 (c) 0.16 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{1,2} + B_{0,2} + SL_{0,2} + SL_{0,2} + SL_{0,2} + SL_{0,2} + SL_{0,2} - SL_{0,2} + SL_{0,2} - S$	62.	The unit of equilibrium constar	at K for the reaction $A + B \Rightarrow C$ would	d be			
63. The equilibrium constant for the reaction $P_2 \Rightarrow 2P$ at 500K and 700K are 1×10^{-10} and 1×10^{-3} respectively. Given reaction will be (a) Fast (b) Slow (c) Endothermic (d) Exothermic (d) Exothermic (d) Exothermic (a) $K = \frac{[NH_1]^2}{[N_2][H_3]^7}$ (b) $K = \frac{[N_1][H_1]^3}{[NH_2]^7}$ (c) $K = \frac{2[NH_1]}{[N_2] \times 3[H_2]}$ (d) $K = \frac{[N_2] \times 3[H_2]}{2[NH_1]}$ 65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25°C. Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCI</i> ₃ was heated in a 10 litre vessel as 250°C; <i>PCI</i> _{3(a)} = <i>PCI</i> _{3(a)} + <i>CI</i> _{3(a)} . At equilibrium the vessel contains 0.1 mole of <i>PCI</i> ₃ , 0.20 mole of <i>PCI</i> ₃ and 0.2 mole of <i>CI</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 25O ₃ + 25O ₃ + O ₂ in equation 2 mole SO ₄ is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of <i>K</i> : (a) 1.2 × 10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 68. The equilibrium constant of the reaction $H_{3(a)} + I_{3(a)} = 2HI_{4(a)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) $K_{\mu} = \frac{[X]^2[Y]}{[Z]}$ (b) $K = \frac{[X][Y]^2}{[Z]}$ (c) $K = \frac{[Z]}{[X][Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$ 70. Value of K_{μ} in the reaction $M_{2CO_{3(a)}} M_{2CO_{3}} + 2H_{4(O)}} \frac{2H_{4(O)} + S_{2(O)}}{R_{4(OO)}}$ (d) $K_{\mu} = \frac{R_{4(O)} + R_{4(O)}}{R_{5(O)} + R_{5(O)}} \frac{1}{R_{4(O)}} = 2H_{4(O)} + S_{2(O)} + 2H_{4(O)} + 2H_{4(O)} + S_{2(O)} + 2H_{4(O)} + 2H_{4(O)} + 2H_{4(O)} + 2H_{4(O)} + 2H_{4(O)} + H_{4(O)} + $		-			un al litura	(4)	Dimensionlass
(a) Fast (b) Slow (c) Endothermic (d) Exothermic (a) Fast (b) Slow (c) Endothermic (d) Exothermic (a) $K = \frac{[NH_1]^2}{[N_2][H_2]^2}$ (b) $K = \frac{[N_2][H_2]^4}{[NH_3]^2}$ (c) $K = \frac{2[NH_1]}{[N_1]\times 3[H_2]}$ (d) $K = \frac{[N_2]\times 3[H_2]}{2[NH_1]}$ (e) $K = \frac{[NH_1]^2}{[N_2][H_2]^2}$ (f) $K = \frac{[N_2][H_2]^4}{[NH_3]^2}$ (g) $K = \frac{2[NH_1]}{[N_1]\times 3[H_2]}$ (e) $K = \frac{[N_2]\times 3[H_2]}{2[NH_1]}$ (f) One mode of ethyl alcohol was treated with one male of acetic acid at 25° C. Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 (a) A quantity of PCI, such and 0.2 mole of CI ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 (c) 0.04 (d) 0.025 (c) 0.04 (d) 0.025 (c) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 (c) 1.2×10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 (a) 1.2×10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 (c) relation or fourth of its original volume, the value of the caction $N_{2(y)} + Z_{2(y)} = 2IH_{(y)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 1.6 (b) 32 (c) 64 (d) 128 (c) 64 (d) 128 (c) K = $\frac{[X]^2}{[X]}$ (f) $K = \frac{[X][Y]}{[X]}$ (c) $K = \frac{[Z]}{[X]^2}[Y]$ (d) $K = \frac{[Z]}{[X][Y]^2}$ (7) Value of K_p in the reaction $M_2C_{N(p)} \times \frac{N_{2(p)} + C_{2(p)} + S_{2(p)}}{N_{NCO_3}}$ (c) $K_p = \frac{N_{2(p)} - N_{NPO}}{P_{10(O_3)}}$ (d) $K_p = \frac{N_{2(p)} - N_{NPO}}{P_{0(O_3)} + N_{NO}}$ (1) An equilibrium constant (K) in mode IWe^{-1} is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 (b) 0.25 (c) 0.50 (d) 4.0 (c) 0.21 (d) 0.02 (c) 0.50 (d) 4.0 (c) 0.22 (d) 0.02 (c) 0.50 (d) 4.0 (c) 0.20 (d) 0.20 (c) 0.2 (d) 0.02 (c) 0.50 (d) 4.0 (c) 0.5							
64. For the reaction $N_{2(p)} + 3H_{2(p)} = 2NH_{N(q)}$, the correct expression of equilibrium constant K is (a) $K = \frac{[NH_1]^2}{[N_2](H_2]^3}$ (b) $K = \frac{[N_2](H_2]^3}{[NH_3]^2}$ (c) $K = \frac{2(NH_3)}{[N_2] \times 3(H_2]}$ (d) $K = \frac{[N_2] \times 3(H_2]}{2(NH_3)}$ 65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25 °C. Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCl</i> ₃ was heated in a 10 litre vessel as 250° <i>C</i> ; <i>PCl</i> _{3(p)} = <i>PCl</i> _{3(p)} + <i>Cl</i> _{3(q)} . At equilibrium the vessel contains 0.1 mole of <i>PCl</i> ₅ 0.20 mole of <i>PCl</i> ₃ and 0.2 mole of <i>Cl</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 25O ₃ = 25O ₂ + O ₂ in equation 2 mole sO ₃ is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10^{-4} (b) 10^{-4} (c) 10^{-2} (d) 0.1 68. The equilibrium constant of the reaction $H_{2_1(p)} + I_{2_1(p)} \approx 2H_{1(p)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) $K = \frac{[N]^2 [N]}{[Z]}$ (b) $K = [\frac{N}{[Z]}]^2$ (c) $K = \frac{[Z]}{[X]^2 [Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$. 70. Value of K_p in the reaction $M_{2CO_{3(p)}} + CO_{3(p)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{A(p)}}{P_{A(CO_3)}}$ (c) $K_p = \frac{P_{CO_2} \times P_{A(p)}}{P_{A(CO_3)}}$ (d) $K_p = \frac{P_{A(p)}O_{2(p)}}{P_{CO_2} \times P_{A(p)}O}}$ 71. An equilibrium mixture of the reaction $2H_2(S(p) = 2H_2(p) + S_2(p))$ had 0.5 mole H_2 on 0.4 mole S_3 in one litre vessel. The value of equilibrium constant for the reaction is (a) 0.02 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(p)} + B_{(p)} = 2C_{(p)}$. 1.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.2 (c) 0.2 (d) 0.02 73. At 490°C , the equi	63.	The equilibrium constant for th	e reaction $P_2 \rightleftharpoons 2P$ at 500K and 700	OK are	1×10^{-10} and 1×10^{-5} resp	pectiv	ely. Given reaction will be
64. For the reaction $N_{2(p)} + 3H_{2(p)} = 2NH_{N(q)}$, the correct expression of equilibrium constant K is (a) $K = \frac{[NH_1]^2}{[N_2](H_2]^3}$ (b) $K = \frac{[N_2](H_2]^3}{[NH_3]^2}$ (c) $K = \frac{2(NH_3)}{[N_2] \times 3(H_2]}$ (d) $K = \frac{[N_2] \times 3(H_2]}{2(NH_3)}$ 65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25 °C. Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCl</i> ₃ was heated in a 10 litre vessel as 250° <i>C</i> ; <i>PCl</i> _{3(p)} = <i>PCl</i> _{3(p)} + <i>Cl</i> _{3(q)} . At equilibrium the vessel contains 0.1 mole of <i>PCl</i> ₅ 0.20 mole of <i>PCl</i> ₃ and 0.2 mole of <i>Cl</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 25O ₃ = 25O ₂ + O ₂ in equation 2 mole sO ₃ is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10^{-4} (b) 10^{-4} (c) 10^{-2} (d) 0.1 68. The equilibrium constant of the reaction $H_{2_1(p)} + I_{2_1(p)} \approx 2H_{1(p)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) $K = \frac{[N]^2 [N]}{[Z]}$ (b) $K = [\frac{N}{[Z]}]^2$ (c) $K = \frac{[Z]}{[X]^2 [Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$. 70. Value of K_p in the reaction $M_{2CO_{3(p)}} + CO_{3(p)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{A(p)}}{P_{A(CO_3)}}$ (c) $K_p = \frac{P_{CO_2} \times P_{A(p)}}{P_{A(CO_3)}}$ (d) $K_p = \frac{P_{A(p)}O_{2(p)}}{P_{CO_2} \times P_{A(p)}O}}$ 71. An equilibrium mixture of the reaction $2H_2(S(p) = 2H_2(p) + S_2(p))$ had 0.5 mole H_2 on 0.4 mole S_3 in one litre vessel. The value of equilibrium constant for the reaction is (a) 0.02 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(p)} + B_{(p)} = 2C_{(p)}$. 1.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.2 (c) 0.2 (d) 0.02 73. At 490°C , the equi							
(a) $K = \frac{[NH_1]^2}{[N_2][H_2]^3}$ (b) $K = \frac{[N_2][H_2]^2}{[NH_3]^2}$ (c) $K = \frac{2[NH_3]}{[N_2] \times 3[H_2]}$ (d) $K = \frac{[N_2] \times 3[H_2]}{2[NH_3]}$ 65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25° C. Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCI</i> , was heated in a 10 <i>Inre</i> vessel as 250° C; <i>PCI</i> ₃₍₄₀ + <i>CI</i> ₃₍₄₀). At equilibrium the vessel contains 0.1 mole of <i>PCI</i> , 0.20 mole of <i>PCI</i> , and 0.2 mole of <i>CI</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 25O ₃ = 25O ₂ + O ₂ in equation 2 mole SO ₄ is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10^{-4} (b) 10^{-4} (c) 10^{-2} (d) 0.1 68. The equilibrium constant of the reaction $H_{2(4)} + I_{2(4)} = 2H_{1(3)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) $X = \frac{[X][Y]}{[Z]}$ (b) $K = [\frac{[X][Y]}{[Z]}$ (c) $K = \frac{[Z]}{[X]^2[Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$ 70. Value of K_p in the reaction $M_{2(O_{3(6)})} + O_{2(p)}$ is (a) $K_p - P_{CO_2}$ (b) $K_p = P_{CO_3} \times \frac{P_{CO_3} \times R_{MO_3}}{P_{M_2(O_3)}}$ (c) $K_p - \frac{P_{CO_3} \times R_{MO_3}}{P_{M_2(O_3)}}$ (d) $K_p = \frac{P_{M_2(O_3)}}{P_{CO_3} \times P_{M_2O}}$ 71. An equilibrium misture of the reaction $2H_2(E) = 2H_2(E) + S_2(E)$ had 0.5 mole H_2 so .10 mole H_2 and 0.4 mole S_1 in one litre vessel. The value of A and 1 mole of B are mixed in 1 litre vessel the following reaction $2H_2(E) + S_2(E)$ had 0.5 mole $H_2(E) + S_2(E)$. I.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (c) 0.4 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(a)} + B_{(a)} = 2C_{(a)}$. I.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c						(d)	Exothermic
65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25° <i>C</i> . Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCI</i> ₃ was heated in a 10 <i>litre</i> vessel as 250° <i>C</i> ; <i>PCI</i> _{3(g)} = <i>PCI</i> _{3(g)} + <i>CI</i> _{3(g)} . At equilibrium the vessel contains 0.1 mole of <i>PCI</i> , 0.00 mole of <i>PCI</i> ₃ and 0.2 mole of <i>CI</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 (c) 0.01 (d) 0.1 68. The equilibrium constant of the reaction <i>H</i> _{2(g)} + <i>H</i> _{2(g)} = 2 <i>HH</i> _(g) is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction 2 <i>X</i> + <i>Y</i> = <i>Z</i> the expression of equilibrium constant will be (a) <i>K</i> = $\frac{ X ^2 Y }{ X }$ (b) $K = \frac{ X Y ^2}{ X }$ (c) $K_{\pi} = \frac{ Z_{0,2} \times R_{0,0}}{R_{0,20,3}}$ (d) $K_{\pi} = \frac{R_{0,20,3}}{R_{0,20,3}} \frac{R_{0,0}}{R_{0,1} + R_{0,20,3}}$ 70. Value of K_{μ} in the reaction $MgCO_{3(\mu)} MgO_{4(\mu)} + CO_{3(\mu)}$ is (a) $K_{\mu} = P_{CO_2}$ (b) $K_{\mu} = P_{CO_2} \times \frac{R_{0,0} \times R_{0,0}}{R_{0,03,0}}$ (c) $K_{\mu} = \frac{P_{CO_2} \times R_{0,0}}{R_{0,00,0}}$ (d) $K_{\mu} = \frac{R_{0,00,0}}{R_{0,00,0}} \times \frac{R_{0,00} \times R_{0,00}}{R_{0,00,00}}$ 71. An equilibrium mixture of the reaction 2 <i>H</i> ₂ <i>S</i> (<i>g</i>) = 2 <i>H</i> ₂ (<i>g</i>) + <i>S</i> (<i>g</i>) had 0.5 mole <i>H</i> ₂ on 0.04 mole <i>S</i> ₂ in one litre vessel. The value of equilibrium constant (<i>K</i>) in <i>mole</i> litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of <i>A</i> and 1 mole of <i>B</i> are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + R_{(g)} = 2C_{(g)}$. 1.5 moles of <i>C</i> is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25	64.	For the reaction $N_{2(g)} + 3H_{2(g)}$	$\Rightarrow 2NH_{3(g)}$, the correct expression of	of equ	iilibrium constant <i>K</i> is		
65. One mole of ethyl alcohol was treated with one mole of acetic acid at 25° <i>C</i> . Two-third of the acid changes into ester at equilibrium. The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCI</i> ₃ was heated in a 10 <i>litre</i> vessel as 250° <i>C</i> ; <i>PCI</i> _{3(g)} = <i>PCI</i> _{3(g)} + <i>CI</i> _{3(g)} . At equilibrium the vessel contains 0.1 mole of <i>PCI</i> , 0.00 mole of <i>PCI</i> ₃ and 0.2 mole of <i>CI</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 (c) 0.01 (d) 0.1 68. The equilibrium constant of the reaction <i>H</i> _{2(g)} + <i>H</i> _{2(g)} = 2 <i>HH</i> _(g) is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction 2 <i>X</i> + <i>Y</i> = <i>Z</i> the expression of equilibrium constant will be (a) <i>K</i> = $\frac{ X ^2 Y }{ X }$ (b) $K = \frac{ X Y ^2}{ X }$ (c) $K_{\pi} = \frac{ Z_{0,2} \times R_{0,0}}{R_{0,20,3}}$ (d) $K_{\pi} = \frac{R_{0,20,3}}{R_{0,20,3}} \frac{R_{0,0}}{R_{0,1} + R_{0,20,3}}$ 70. Value of K_{μ} in the reaction $MgCO_{3(\mu)} MgO_{4(\mu)} + CO_{3(\mu)}$ is (a) $K_{\mu} = P_{CO_2}$ (b) $K_{\mu} = P_{CO_2} \times \frac{R_{0,0} \times R_{0,0}}{R_{0,03,0}}$ (c) $K_{\mu} = \frac{P_{CO_2} \times R_{0,0}}{R_{0,00,0}}$ (d) $K_{\mu} = \frac{R_{0,00,0}}{R_{0,00,0}} \times \frac{R_{0,00} \times R_{0,00}}{R_{0,00,00}}$ 71. An equilibrium mixture of the reaction 2 <i>H</i> ₂ <i>S</i> (<i>g</i>) = 2 <i>H</i> ₂ (<i>g</i>) + <i>S</i> (<i>g</i>) had 0.5 mole <i>H</i> ₂ on 0.04 mole <i>S</i> ₂ in one litre vessel. The value of equilibrium constant (<i>K</i>) in <i>mole</i> litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of <i>A</i> and 1 mole of <i>B</i> are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + R_{(g)} = 2C_{(g)}$. 1.5 moles of <i>C</i> is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25		$[NH_3]^2$	(b) $_{K}$ $[N_{2}][H_{2}]^{3}$	(2)	$_{\rm V}$ 2[NH ₃]	(4)	$[N_2] \times 3[H_2]$
The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCI</i> ₃ was heated in a 10 <i>litre</i> vessel as 250° <i>C</i> ; <i>PCI</i> _{3(a)} = <i>PCI</i> _{3(a)} + <i>CI</i> _{2(a)} . At equilibrium the vessel contains 0.1 mole of <i>PCI</i> ₃ . 0.20 mole of <i>PCI</i> ₃ and 0.2 mole of <i>CI</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 25 <i>O</i> ₃ = 25 <i>O</i> ₂ + <i>O</i> ₂ in equation 2 mole 5 <i>O</i> ₃ is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of <i>K</i> _c (a) 1.2×10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 68. The equilibrium constant of the reaction $H_{2(a)} + I_{2(a)} = 2HI_{(a)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \left[\frac{X_1^2}{ Z }\right]$ (b) $K = \left[\frac{ X Y ^2}{ Z }$ (c) $K = \frac{ Z }{ X ^3 Y ^3}$ (d) $K = \frac{ Z }{ X Y ^3}$ 70. Value of K_p in the reaction $M_g CO_{3(a)} MgO_{1(a)} + CO_{2(a)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_3} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_3S(g) = 2H_3(g) + S_3(g)$ had 0.5 mole H_3S , 0.10 mole H_3 and 0.4 mole S_3 in one litre vessel. The value of equilibrium constant (<i>K</i>) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of <i>A</i> and 1 mole of <i>B</i> are mixed in 1 litre vessel the following reaction takes place $A_{(x)} + B_{(x)} = 2C_{(x)} \cdot 1.5$ moles of <i>C</i> is formed at equilibrium constant for the synthesis of <i>HI</i> is 50, the value of K for the dissociation of <i>HI</i> will be: (a) 0.02 (b) 2.0 (c) 0.2 (c) 0.2 (d) 0.02 73. At 490° <i>C</i> , the equilibrium constant for the exertion is (a) 30.66 (b) 32.66 (c) 34.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction H_2 , I_2 and		(a) $K = \frac{1}{[N_2][H_2]^3}$	$(D) K = \frac{[NH_3]^2}{[NH_3]^2}$	(0)	$\mathbf{K} = \frac{1}{[N_2] \times 3[H_2]}$	(u)	$\mathbf{K} = \frac{1}{2[NH_3]}$
The equilibrium constant for the reaction will be (a) 1 (b) 2 (c) 3 (d) 4 66. A quantity of <i>PCI</i> ₃ was heated in a 10 <i>litre</i> vessel as 250° <i>C</i> ; <i>PCI</i> _{3(a)} = <i>PCI</i> _{3(a)} + <i>CI</i> _{2(a)} . At equilibrium the vessel contains 0.1 mole of <i>PCI</i> ₃ . 0.20 mole of <i>PCI</i> ₃ and 0.2 mole of <i>CI</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. 25 <i>O</i> ₃ = 25 <i>O</i> ₂ + <i>O</i> ₂ in equation 2 mole 5 <i>O</i> ₃ is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of <i>K</i> _c (a) 1.2×10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 68. The equilibrium constant of the reaction $H_{2(a)} + I_{2(a)} = 2HI_{(a)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \left[\frac{X_1^2}{ Z }\right]$ (b) $K = \left[\frac{ X Y ^2}{ Z }$ (c) $K = \frac{ Z }{ X ^3 Y ^3}$ (d) $K = \frac{ Z }{ X Y ^3}$ 70. Value of K_p in the reaction $M_g CO_{3(a)} MgO_{1(a)} + CO_{2(a)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_3} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_3S(g) = 2H_3(g) + S_3(g)$ had 0.5 mole H_3S , 0.10 mole H_3 and 0.4 mole S_3 in one litre vessel. The value of equilibrium constant (<i>K</i>) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of <i>A</i> and 1 mole of <i>B</i> are mixed in 1 litre vessel the following reaction takes place $A_{(x)} + B_{(x)} = 2C_{(x)} \cdot 1.5$ moles of <i>C</i> is formed at equilibrium constant for the synthesis of <i>HI</i> is 50, the value of K for the dissociation of <i>HI</i> will be: (a) 0.02 (b) 2.0 (c) 0.2 (c) 0.2 (d) 0.02 73. At 490° <i>C</i> , the equilibrium constant for the exertion is (a) 30.66 (b) 32.66 (c) 34.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction H_2 , I_2 and	65.	One mole of ethyl alcohol was	treated with one mole of acetic acid	d at 2	$5^{\circ}C$. Two-third of the acid	chan	ges into ester at equilibrium.
66. A quantity of PCl_3 was heated in a 10 litre vessel as 250° C; $PCl_{5(g)} \neq PCl_{3(g)} + Cl_{2(g)}$. At equilibrium the vessel contains 0.1 mole of PCl_3 , 0.20 mole of PCl_3 and 0.2 mole of Cl_2 . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 (c) 0.04 (d) 0.025 (c) 10 ⁻² (d) 0.1 (a) 1.2 × 10 ⁻⁴ (b) 10 ⁻⁴ (c) 10 ⁻² (d) 0.1 (b) 4.2 (c) 64 (d) 128 (c) 64 (d) 128 (c) 64 (d) 128 (c) 64 (c) 16 (c) 64 (c) 160 (c) 160 (c) 160 (c) 160 (c) 160 (c) 16 (c) 160 (-				(
of <i>PCl</i> ₃ 0.20 mole of <i>PCl</i> ₃ and 0.2 mole of <i>Cl</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. $2SO_3 = 2SO_2 + O_2$ in equation 2 mole SO_3 is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10^{-4} (b) 10^{-4} (c) 10^{-2} (d) 0.1 68. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \left[\frac{X_i^2 [Y]}{[Z]}$ (b) $K = \left[\frac{X_i^2 [Y]_i^2}{[Z]}$ (c) $K = \left[\frac{Z}{[X]^2 [Y]}\right]$ (d) $K = \left[\frac{Z}{[X] [Y]_i^2}\right]$ 70. Value of K_p in the reaction $M_gCO_{3(p)} + CO_{3(p)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2 s 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° C , the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2H_1$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $H_2O \Box H_2O \Box H_2O' \Box H_2O' \Box H_2O'$		(a) 1	(b) 2	(c)	3	(d)	4
of <i>PCl</i> ₃ 0.20 mole of <i>PCl</i> ₃ and 0.2 mole of <i>Cl</i> ₂ . The equilibrium constant of the reaction is (a) 0.02 (b) 0.05 (c) 0.04 (d) 0.025 67. $2SO_3 = 2SO_2 + O_2$ in equation 2 mole SO_3 is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10^{-4} (b) 10^{-4} (c) 10^{-2} (d) 0.1 68. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \left[\frac{X_i^2 [Y]}{[Z]}$ (b) $K = \left[\frac{X_i^2 [Y]_i^2}{[Z]}$ (c) $K = \left[\frac{Z}{[X]^2 [Y]}\right]$ (d) $K = \left[\frac{Z}{[X] [Y]_i^2}\right]$ 70. Value of K_p in the reaction $M_gCO_{3(p)} + CO_{3(p)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2 s 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° C , the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2H_1$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $H_2O \Box H_2O \Box H_2O' \Box H_2O' \Box H_2O'$	66.	A quantity of <i>PCl</i> ₅ was heated	in a 10 <i>litre</i> vessel as 250°C; PCl	$l_{5(g)} =$	= $PCl_{3(g)} + Cl_{2(g)}$. At equilib	rium	the vessel contains 0.1 mole
67. $2SO_3 = 2SO_2 + O_2$ in equation 2 mole SO_3 is taken in 10 litre flask its degree of dissociation is 10%. Find out the value of K_c (a) 1.2×10^{-4} (b) 10^{-4} (c) 10^{-2} (d) 0.1 68. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \frac{ X ^2 Y }{ Z }$ (b) $K = \frac{ X Y ^2}{ Z }$ (c) $K = \frac{ Z }{ X ^2 Y }$ (d) $K = \frac{ Z }{ X Y ^2}$ 70. Value of K_p in the reaction $MgCO_{3(q)} MgO_{(q)} + CO_{2(q)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{M_FCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant for the reaction is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° C, the equilibrium constant for the synthesis of H1 is 50, the value of K for the dissociation of H1 will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and $H1$ are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction $H_2O \Box H_3O^+ + CH_3COO^-$							
(a) 1.2×10^{-4} (b) 10^{-4} (c) 10^{-2} (d) 0.1 68. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \frac{ X ^2 Y }{ Z }$ (b) $K = \frac{ X Y ^2}{ Z }$ (c) $K = \frac{ Z }{ X ^2 Y }$ (d) $K = \frac{ Z }{ X Y ^2}$ 70. Value of K_p in the reaction $MgCO_{3(p)} MgO_{(p)} + CO_{2(g)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction $H_2O \square H_3O^+ + CH_3COO^-$						(d)	0.025
68. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \frac{[X]^2[Y]}{[Z]}$ (b) $K = \frac{[X][Y]^2}{[Z]}$ (c) $K = \frac{[Z]}{[X]^2[Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$ 70. Value of K_p in the reaction $MgCO_{3(p)} MgO_{(p)} + CO_{2(g)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)} \cdot 1.5$ moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$	67.	$2SO_3 = 2SO_2 + O_2$ in equation	on 2 mole SO_3 is taken in 10 litre fl	ask it	s degree of dissociation is 10)%. F	ind out the value of <i>K</i> _c
68. The equilibrium constant of the reaction $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ is 64. If the volume of the container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \frac{[X]^2[Y]}{[Z]}$ (b) $K = \frac{[X][Y]^2}{[Z]}$ (c) $K = \frac{[Z]}{[X]^2[Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$ 70. Value of K_p in the reaction $MgCO_{3(p)} MgO_{(p)} + CO_{2(g)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)} \cdot 1.5$ moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$		(a) 1.2×10^{-4}	(b) 10^{-4}	(c)	10^{-2}	(d)	0.1
original volume, the value of the equilibrium constant will be (a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \frac{[X]^2[Y]}{[Z]}$ (b) $K = \frac{[X][Y]^2}{[Z]}$ (c) $K = \frac{[Z]}{[X]^2[Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$ 70. Value of K_p in the reaction $MgCO_{3(s)} MgO_{(s)} + CO_{2(g)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)} \cdot 1.5$ moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490 ° C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction $H_2O \square H_3O^+ + CH_3COO^-$	68		e reaction $H_{1} + I_{2} \Rightarrow 2H_{1}$	Ċ		Ċ	
(a) 16 (b) 32 (c) 64 (d) 128 69. For the following chemical reaction $2X + Y = Z$ the expression of equilibrium constant will be (a) $K = \frac{[X]^2[Y]}{[Z]}$ (b) $K = \frac{[X][Y]^2}{[Z]}$ (c) $K = \frac{[Z]}{[X]^2[Y]}$ (d) $K = \frac{[Z]}{[X][Y]^2}$ 70. Value of K_p in the reaction $M_gCO_{3(s)} M_gO_{(s)} + CO_{2(g)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) \approx 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490°C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 2.8.0 mol per liter respectively, the equilibrium constant for the reaction of H_2 , I_3 and HI are 8.0, 3.0 and 2.8.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$	00.			15 0 1.	in the volume of the contain	101 15	reduced to one routen of its
(a) $K = \frac{\left[X\right]^{2}\left[Y\right]}{\left[Z\right]}$ (b) $K = \frac{\left[X\right]\left[Y\right]^{2}}{\left[Z\right]}$ (c) $K = \frac{\left[Z\right]}{\left[X\right]^{2}\left[Y\right]}$ (d) $K = \frac{\left[Z\right]}{\left[X\right]\left[Y\right]^{2}}$ 70. Value of K_{p} in the reaction $MgCO_{3(s)} MgO_{(s)} + CO_{2(g)}$ is (a) $K_{p} = P_{CO_{2}}$ (b) $K_{p} = P_{CO_{2}} \times \frac{P_{CO_{2}} \times P_{MgO}}{P_{MgCO_{3}}}$ (c) $K_{p} = \frac{P_{CO_{2}} \times P_{MgO}}{P_{MgCO_{3}}}$ (d) $K_{p} = \frac{P_{MgCO_{3}}}{P_{CO_{2}} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_{2}S(g) = 2H_{2}(g) + S_{2}(g)$ had 0.5 mole $H_{2}S$, 0.10 mole H_{2} and 0.4 mole S_{2} in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium . The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_{2} + I_{2} = 2HI$, the equilibrium concentration of H_{2} , I_{2} and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_{3}COOH + H_{2}O \square H_{3}O^{+} + CH_{3}COO^{-}$		0	1	(c)	64	(d)	128
70. Value of K_p in the reaction $MgCO_{3(s)} MgO_{(s)} + CO_{2(g)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (<i>K</i>) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of <i>A</i> and 1 mole of <i>B</i> are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)} \cdot 1.5$ moles of <i>C</i> is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° <i>C</i> , the equilibrium constant for the synthesis of <i>HI</i> is 50, the value of K for the dissociation of <i>HI</i> will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$	69.	For the following chemical read	tion $2X + Y \rightleftharpoons Z$ the expression of	equil	ibrium constant will be		
70. Value of K_p in the reaction $MgCO_{3(s)} MgO_{(s)} + CO_{2(g)}$ is (a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (<i>K</i>) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of <i>A</i> and 1 mole of <i>B</i> are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)} \cdot 1.5$ moles of <i>C</i> is formed at equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490° <i>C</i> , the equilibrium constant for the synthesis of <i>HI</i> is 50, the value of K for the dissociation of <i>HI</i> will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$		$[X]^{2}[Y]$	$[X][Y]^2$		[<i>z</i>]		[z]
(a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490°C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \square H_3O^+ + CH_3COO^-$		(a) $K = \frac{[L^{1}] [L^{1}]}{[Z]}$	(b) $K = \frac{[-1]^2}{[Z]}$	(c)	$K = \frac{1}{\left[X\right]^2 \left[Y\right]}$	(d)	$K = \frac{1}{[X][Y]^2}$
(a) $K_p = P_{CO_2}$ (b) $K_p = P_{CO_2} \times \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (c) $K_p = \frac{P_{CO_2} \times P_{MgO}}{P_{MgCO_3}}$ (d) $K_p = \frac{P_{MgCO_3}}{P_{CO_2} \times P_{MgO}}$ 71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490°C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant for the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \square H_3O^+ + CH_3COO^-$	70.	Value of K_p in the reaction M_g	$gCO_{3(s)} MgO_{(s)} + CO_{2(g)}$ is				
71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490 °C , the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2, I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$					$P_{CO} \times P_{MrO}$		P_{MaCO}
71. An equilibrium mixture of the reaction $2H_2S(g) = 2H_2(g) + S_2(g)$ had 0.5 mole H_2S , 0.10 mole H_2 and 0.4 mole S_2 in one litre vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is (a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490 °C , the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2, I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$		(a) $K_p = P_{CO_2}$	(b) $K_p = P_{CO_2} \times \frac{CO_2 - M_{gO}}{P_{MgCO_3}}$	(c)	$K_p = \frac{CO_2 - MgO}{P_{MgCO_3}}$	(d)	$K_p = \frac{M_g CO_3}{P_{CO_3} \times P_{MgO}}$
vessel. The value of equilibrium constant (K) in mole litre ⁻¹ is(a) 0.004(b) 0.008(c) 0.016(d) 0.16072.When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium. The equilibrium constant for the reaction is(a) 0.12(b) 0.25(c) 0.50(d) 4.073.At 490° C , the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be:(a) 20.0(b) 2.0(c) 0.2(d) 0.0274.For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2, I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is(a) 30.66(b) 32.66(c) 34.66(d) 36.6675.Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$	71.	An equilibrium mixture of the	0 5		0 5		2 0
(a) 0.004 (b) 0.008 (c) 0.016 (d) 0.160 72. When 3 mole of <i>A</i> and 1 mole of <i>B</i> are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of <i>C</i> is formed at equilibrium. The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At $490^{\circ}C$, the equilibrium constant for the synthesis of <i>HI</i> is 50, the value of K for the dissociation of <i>HI</i> will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$				/	2- /	2	<u>2</u>
72. When 3 mole of A and 1 mole of B are mixed in 1 litre vessel the following reaction takes place $A_{(g)} + B_{(g)} = 2C_{(g)}$. 1.5 moles of C is formed at equilibrium. The equilibrium constant for the reaction is(a) 0.12(b) 0.25(c) 0.50(d) 4.0 73. At 490°C, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be:(a) 20.0(b) 2.0(c) 0.2(d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is(a) 30.66(b) 32.66(c) 34.66(d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$		•		(c)	0.016	(d)	0 160
formed at equilibrium . The equilibrium constant for the reaction is (a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73. At 490 ° C , the equilibrium constant for the synthesis of <i>HI</i> is 50, the value of K for the dissociation of <i>HI</i> will be: (a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 <i>mol per liter</i> respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$	72.					. ,	
(a) 0.12 (b) 0.25 (c) 0.50 (d) 4.0 73.At $490^{\circ}C$, the equilibrium constant for the synthesis of HI is 50, the value of K for the dissociation of HI will be:(a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74.For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0 , 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75.Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$						8)	(8) (8)
(a) 20.0 (b) 2.0 (c) 0.2 (d) 0.02 74. For the reaction $H_2 + I_2 = 2HI$, the equilibrium concentration of H_2 , I_2 and HI are 8.0, 3.0 and 28.0 <i>mol per liter</i> respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$					0.50	(d)	4.0
 74. For the reaction H₂ + I₂ = 2HI, the equilibrium concentration of H₂, I₂ and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, CH₃COOH + H₂O □ H₃O⁺ + CH₃COO⁻ 	73.	At $490^{\circ}C$, the equilibrium con	stant for the synthesis of <i>HI</i> is 50,	the va	alue of K for the dissociation	n of	HI will be:
 74. For the reaction H₂ + I₂ = 2HI, the equilibrium concentration of H₂, I₂ and HI are 8.0, 3.0 and 28.0 mol per liter respectively, the equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, CH₃COOH + H₂O □ H₃O⁺ + CH₃COO⁻ 		(-) 20.0		(-)	0.2	(1)	0.02
equilibrium constant of the reaction is (a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$	74						
(a) 30.66 (b) 32.66 (c) 34.66 (d) 36.66 75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \Box H_3O^+ + CH_3COO^-$	/4.			<i>п</i> ₂ ,	1 ₂ and <i>m</i> are o.0, 5.0 and 2	.o.0 N	noi per inter respectively, tile
75. Write the equilibrium constant for the reaction, $CH_3COOH + H_2O \square H_3O^+ + CH_3COO^-$		-		(c)	34.66	(d)	36.66
	75.					. ,	
(a) $K = \frac{[H_3O_1][H_2O_1]}{[CH_3COO^-][CH_3COOH]}$ (b) $K = \frac{[H_3O_1][CH_3COOH]}{[H_2O][CH_3COOH]}$							
		(a) $K = \frac{[CH_3COO^-][CH_3COO^-]}{[CH_3COO^-][CH_3COO^-]}$	OH]	(b)	$K = \frac{[H_3O][CH_3COOH]}{[H_2O][CH_3COOH]}$		
			-		2 5 -		

	(c) $K = \frac{[H_3O^+][H_2O]}{[CH_3COOH][CH_3COO^-]}$	(d) $K = \frac{[H_2 O][CH_3 COO]}{[H_2 O][CH_3 COO]}$	<u>'</u>] H]
	(e) None of these		-
76.	In the thermal dissociation of PCl_5 , the partial pressure in the found to dissociate. The equilibrium constant of the reaction (i		s 1.0 atmosphere when half of PCl_5 is
	(a) 0.25 (b) 0.50	(c) 1.00	(d) 0.3
77.	9.2 <i>grams</i> of $N_2O_{4(g)}$ is taken in a closed one <i>litre</i> vessel and he		
	equilibrium, 50% $N_2O_{4(g)}$ is dissociated. What is the equilibrium	im constant (in <i>mol litre</i> ^{-1}) (Mol	lecular weight of $N_2O_4 = 92$)
	(a) 0.1 (b) 0.4	(c) 0.2	(d) 2
78.	Two moles of NH_3 when put into a previously evacuated vess one mole of NH_3 is present, the equilibrium constant is	el (one <i>litre</i>), partially dissociate	e into N_2 and H_2 . If at equilibrium
	(a) $3/4 \mod^2 litre^{-2}$ (b) $27/64 \mod^2 litre^{-2}$	(c) $27 / 32 mol^2 litre^{-2}$	(d) $27 / 16 mol^2 litre^{-2}$
79.	In the reaction $CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$. The	equilibrium constant may chan	ge when
	(a) CH_3COO^- is added (b) CH_3COOH is added	(c) Catalyst is added	(d) Mixture is heated
80.	A chemical reaction is catalyzed by a catalyst <i>X</i> . Hence <i>X</i>		
	(a) Reduces enthalpy of the reaction	(b) Decreases rate consta	
04	(c) Increases activation energy of the reaction	(d) Does not affect equilib	prium constant of reaction
81.	In the reaction $N_2(g) + 3H_2 \Rightarrow 2NH_3(g)$, the value of the equ		
	(a) Volume of the reaction vessel	(b) Total pressure of the s	system
02	(c) The initial concentration of nitrogen and hydrogen	(d) The temperature	
82.	Which statement for equilibrium constant is true for the reaction		
	(a) Not changes with temperature	(b) Changes when catalys	
83.	(c) Increases with temperatureThe equilibrium constant in a reversible reaction at a given tem	(d)	Changes with temperature
05.	(a) Depends on the initial concentration of the reactants		ntration of the products at equilibrium
	(c) Does not depend on the initial concentrations	(d) It is not characteristic	
84.	The equilibrium constant (K_c) for the reaction $HA + B \Rightarrow BH$ rate constant for the backward reaction is	$^{+} + A^{-}$ is 100. If the rate constant	nt for the forward reaction is 10^5 , then
	(a) 10^7 (b) 10^3	(c) 10^{-3}	(d) 10^{-5}
85.	A tenfold increase in pressure on the reaction $N_{2(g)} + 3H_{2(g)} =$		
	(a) Unchanged (b) Two times	(c) Four times	(d) Ten times
		el-2	
86.	4 moles of A are mixed with 4 moles of B . At equilibrium for equilibrium constant for the reaction will be	or the reaction $A + B \rightleftharpoons C + D$, 2 moles of C and D are formed. The
	(a) $\frac{1}{4}$ (b) $\frac{1}{2}$	(c) 1	(d) 4
	4 2		

87.	<i>HI</i> was heated in a closed tub constant for this dissociation	-	n is obtained. At this temperature 220	% of <i>HI</i> was dissociated. The equilibrium
	(a) 0.282	(b) 0.0796	(c) 0.0199	(d) 1.99
88.	A reversible chemical reacti equilibrium constant will	ion having two reactants i	n equilibrium. If the concentrations	of the reactants are doubled, then the
	(a) Also be doubled	(b) Be halved	(c) Become one fourth	(d) Remain the same
89.				berature is 2.85 K and that at 698 K is
	1.4×10^{-2} . Hence the reason	that <i>HI</i> exists as a stable co	ompound at room temperature is	
	(a) It decomposes so slowly	r that equilibrium is not read	dily achieved	
	(b) The bond <i>HI</i> has a large			
		-	on at room temperature is – 0.62 <i>kcal</i>	
	(d) It is uncatalytic reaction			
90.	Partial pressures of <i>A</i> , <i>B</i> , <i>C</i> ar numerical value of equilibriu		system $A + 2B \Rightarrow C + 3D$ are $A = 0.20$; $B = 0.10$; $C = 0.30$ and $D = 0.50$ <i>atm</i> . the
	(a) 11.25	(b) 18.75	(c) 5	(d) 3.75
91.	_	-	m constant depend on the units of con	icentration
	(a) $NO_{(g)} \approx \frac{1}{2}N_{2(g)} + \frac{1}{2}O_{2(g)}$	(g)		
	(b) $Zn_{(s)} + Cu_{(aq)}^{2+} \approx Cu_{(s)} + Z$	$Zn \frac{2+}{(aq)}$		
	(c) $C_2H_5OH_{(l)} + CH_3COOP$	$H_{(l)} \rightleftharpoons CH_3 COOC_2 H_{5(l)} + H$	$C_2 O_{(l)}$ (Reaction carried in an inert solv	rent)
	(d) $COCl_{2(g)} \rightleftharpoons CO_{(g)} + Cl_{2(g)}$	g)		
92.	The decomposition of N_2O_4	to NO_2 is carried out at 2	80 <i>K</i> in chloroform. When equilibrium	n has been established, 0.2 mol of N_2O_4
			The equilibrium constant for reaction	
	(a) 1×10^{-2}	(b) 2×10^{-3}	(c) 1×10^{-5}	
93.	In a reaction $A + B \Rightarrow C + D$,			0.4 and 1.0 respectively. The equilibrium
	constant is (a) 0.1	(b) 1.0	(c) 10	(d) ∞
94.		$+ B \Rightarrow C + D$, when one n		ixed, 0.6 mole each of the products are
	(a) 1	(b) 0.36	(c) 2.25	(d) 4/9
95.		he equilibrium constant of t	the reaction $2NO_{(g)} + Cl_{2(g)} = 2NOCl$	(g) is
			(c) $K_c = \frac{[NOCl]^2}{[NO][Cl_2]^2}$	
96.		-	tration of the reactants at $25^{\circ}C$ is in	-
	2 2			C C
	(a) Increase		(b) Decrease	
	(c) Remains the same		(d) Depends on the natu	
97.	At a given temperature, the e	equilibrium constant for rea	action $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ is	2.4×10^{-3} . At the same temperature, the
	equilibrium constant for read	ction $PCl_3(g) + Cl_2(g) = PC$	$\mathcal{U}_5(g)$ is	
	(a) 2.4×10^{-3}	(b) -2.4×10^{-3}	(c) 4.2×10^2	(d) 4.8×10^2
98.	For the reaction $C(s) + CO_2(s)$ K_p for the reaction is	f(g) = 2CO(g), the partial p	ressure of CO_2 and CO are 2.0 and CO	4.0 <i>atm</i> respectively at equilibrium. The
	(a) 0.5	(b) 4.0	(c) 8.0	(d) 32.0

	<i>litre</i> flask. The value of K_c	in mole <i>litre</i> ⁻¹ is		
	(a) 0.004	(b) 0.080	(c) 0.016	(d) 0.160
00.	In a chemical equilibrium, constant of the forward rea		vard reaction is 7.5×10^{-4} and the	equilibrium constant is 1.5. So the r
	(a) 5×10^{-4}	(b) 2×10^{-3}	(c) 1.125×10^{-3}	(d) 9.0×10^{-4}
01.	28 g of N_2 and 6 g of H_2	were kept at $400^{\circ}C$ in 1 <i>litre</i> v	vessel, the equilibrium mixture conta	nined 27.54 g of NH_3 . The approxim
	value of K_c for the above	reaction can be (in <i>mole</i> $^{-2}$ <i>litre</i> ²)	
	(a) 75	(b) 50	(c) 25	(d) 100
02.			noles respectively for the equilibrium	
				2n + 1 $2n + 1$ $2n + 1$ $n + 2n + 2n + 1$ $n + 2n +$
	(a) 0.625	(b) 0.0625	(c) 6.25	(d) 0.00625
03.) 50% dissociated. The value of K_p
	that temperature will be	-		P P
	(a) 0.75 atmosphere	(b) 6.75 atmosphere	(c) 2.00 atmosphere	(d) 1.33 atmosphere
04.	In the reaction $PCl_5 \Rightarrow PC$	$Cl_3 + Cl_2$. 4 moles of PCl_5 are t		ium flask contain 0.4 moles of chlori
	Its equilibrium constant w		-	
	(a) 0.011	(b) 0.022	(c) 0.044	(d) 0.001
)5.	The equilibrium constant	(K_p) for the reaction $PCl_5(g) \rightarrow$	$\rightarrow PCl_3(g) + Cl_2(g)$ is 16. If the volume	e of the container is reduced to one l
		ue of K_p for the reaction at the		
	(a) 32	(b) 64	(c) 16	(d) 4
)6.				ed in a 2.0 <i>l</i> flask and the equilibri
<i>.</i>		<i>ole/l</i> . The equilibrium constant		eu in a 2.07 hask and the equilibri
			-	
7	(a) 0.073	(b) 0.147	(c) 0.33	(d) 0.026
07.			ation is completed the concentury	Han of CO and CO are sound
	concentration of O_2 is	$_{c} = 100$, $\alpha = 1$, half of the real	action is completed, the concentra	tion of SO_3 and SO_2 are equal,
		(b) $\frac{1}{2}$ of SO_2	action is completed, the concentration (c) 2 times of SO_2	
)8.	concentration of O_2 is (a) 0.001 <i>M</i>	(b) $\frac{1}{2}$ of <i>SO</i> ₂		(d) Data incomplete
)8.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel	(b) $\frac{1}{2}$ of <i>SO</i> ₂	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0	(d) Data incomplete
08.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 = COCl_2$ is	(d) Data incomplete 0.2 moles of <i>COCl</i> ₂ and 0.1 mole of
	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and <i>Cl</i> ₂ are mixed to form quilibrium constant K_c for the r (b) 10	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15	 (d) Data incomplete 2 moles of COCl₂ and 0.1 mole of (d) 20
	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r (b) 10 <i>D</i> . Initially we start with equal	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15	 (d) Data incomplete 2 moles of COCl₂ and 0.1 mole of (d) 20
	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C + C$	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r (b) 10 <i>D</i> . Initially we start with equal	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15	 (d) Data incomplete 2 moles of COCl₂ and 0.1 mole of (d) 20
)9.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibrium (c) 1/4	 (d) Data incomplete 2 moles of COCl₂ and 0.1 mole of (d) 20 cium we find the moles of C is two tir
08. 09. 10.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>)	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) <i>K</i> /x	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibrian (c) 1/4 omes (c) K+x	 (d) Data incomplete 2 moles of <i>COCl</i>₂ and 0.1 mole of (d) 20 rium we find the moles of <i>C</i> is two tin (d) 1/2 (d) <i>K</i>
)9. LO.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>)	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) <i>K</i> /x n and iodine heated in a sealed	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibrian (c) 1/4 omes (c) K+x	 (d) Data incomplete 2 moles of <i>COCl</i>₂ and 0.1 mole of (d) 20 rium we find the moles of <i>C</i> is two tin (d) 1/2 (d) <i>K</i>
)9. LO.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and Cl_2 . The ed (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>) 4.5 moles each of hydroge	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) <i>K</i> /x n and iodine heated in a sealed	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibrian (c) 1/4 omes (c) K+x	 (d) Data incomplete 2 moles of <i>COCl</i>₂ and 0.1 mole of (d) 20 rium we find the moles of <i>C</i> is two tir (d) 1/2 (d) <i>K</i>
)9. 10. 11.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>) 4.5 moles each of hydroge constant for $H_{2(g)} + I_{2(g)} =$ (a) 1	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the r (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) <i>K/x</i> n and iodine heated in a sealed $= 2HI_{(g)}$ is	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibriant (c) 1/4 omes (c) K+x ten litre vessel. At equilibrium, 3 m (c) 5	 (d) Data incomplete 0.2 moles of <i>COCl</i>₂ and 0.1 mole of (d) 20 (d) 20 (d) 1/2 (d) <i>K</i> noles of <i>HI</i> were found. The equilibri
09.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>) 4.5 moles each of hydroge constant for $H_{2(g)} + I_{2(g)} =$ (a) 1	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the read (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) <i>K</i> /x n and iodine heated in a sealed $E 2HI_{(g)}$ is (b) 10	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibriant (c) 1/4 omes (c) K+x ten litre vessel. At equilibrium, 3 m (c) 5	 0.2 moles of COCl₂ and 0.1 mole of (d) 20 rium we find the moles of C is two tir (d) 1/2 (d) K noles of <i>HI</i> were found. The equilibri
09. 10. 11.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>) 4.5 moles each of hydroge constant for $H_{2(g)} + I_{2(g)} =$ (a) 1 For a reversible reaction, if (a) Is halved	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the reaction (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) <i>K/x</i> n and iodine heated in a sealed $E^2 2HI_{(g)}$ is (b) 10 f concentrations of the reactants (b) Is doubled	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 = COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibriant (c) 1/4 omes (c) K+x ten litre vessel. At equilibrium, 3 m (c) 5 s are doubled, then equilibrium	 (d) Data incomplete 0.2 moles of COCl₂ and 0.1 mole of (d) 20 (d) 20 (d) 1/2 (d) 1/2 (d) <i>K</i> noles of <i>HI</i> were found. The equilibri (d) 0.33 (d) Becomes 1/4th
)9. 10. 11.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and <i>Cl</i> ₂ . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>) 4.5 moles each of hydroge constant for $H_{2(g)} + I_{2(g)} =$ (a) 1 For a reversible reaction, if (a) Is halved	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the reaction (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) <i>K/x</i> n and iodine heated in a sealed $E^2 2HI_{(g)}$ is (b) 10 f concentrations of the reactants (b) Is doubled	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 \Rightarrow COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibriant (c) 1/4 omes (c) K+x ten litre vessel. At equilibrium, 3 m (c) 5 s are doubled, then equilibrium (c) Remains same	 (d) Data incomplete 0.2 moles of COCl₂ and 0.1 mole of (d) 20 (d) 20 (d) 1/2 (d) 1/2 (d) <i>K</i> noles of <i>HI</i> were found. The equilibri (d) 0.33 (d) Becomes 1/4th
)9. 10. 11.	concentration of O_2 is (a) 0.001 <i>M</i> In a 500 <i>ml</i> capacity vessel each of <i>CO</i> and Cl_2 . The ec (a) 5 A reaction is $A + B \rightarrow C +$ of <i>A</i> . What is the equilibriu (a) 4 If concentration of reactant (a) In (<i>K</i> / <i>x</i>) 4.5 moles each of hydroge constant for $H_{2(g)} + I_{2(g)} =$ (a) 1 For a reversible reaction, if (a) Is halved At a certain temperature 2 (a) 0.25	(b) $\frac{1}{2}$ of SO_2 <i>CO</i> and Cl_2 are mixed to form quilibrium constant K_c for the reaction (b) 10 <i>D</i> . Initially we start with equal m constant of the reaction (b) 2 ts is increased by 'x' then <i>K</i> becomes (b) K/x n and iodine heated in a sealed $E^2HI_{(g)}$ is (b) 10 f concentrations of the reactants (b) Is doubled $EHI = H_2 + I_2$ only 50% <i>HI</i> is different to the search of	(c) 2 times of SO_2 $COCl_2$. At equilibrium, it contains 0 reaction $CO + Cl_2 = COCl_2$ is (c) 15 concentration of <i>A</i> and <i>B</i> . At equilibriant (c) 1/4 omes (c) K+x ten litre vessel. At equilibrium, 3 m (c) 5 s are doubled, then equilibrium (c) Remains same ssociated at equilibrium. The equilibriant	 (d) Data incomplete 0.2 moles of COCl₂ and 0.1 mole of (d) 20 (d) 20 (d) 1/2 (d) 1/2 (d) <i>K</i> (d) <i>K</i> (d) 0.33 (d) Becomes 1/4th (d) 0.50

	(c) <i>K</i> increases as temperatu	re decreases	(d) <i>K</i> is independent of tem	nerature		
115.				•		
115.	For the reversible reaction, $N_{2(g)} + 3H_{2(g)} \approx 2NH_{3(g)}$ at 500 ° C, the value of K_p is 1.44×10^{-5} when partial pressure is measured in atmospheres. The corresponding value of K_c with concentration in <i>mole litre</i> ⁻¹ , is					
			(b) 1.44×10^{-5} /(8.314 ×773	<u>→</u> -2		
	(a) $1.44 \times 10^{-5} / (0.082 \times 500)$			·		
	(c) $1.44 \times 10^{-5} / (0.082 \times 773)$		(d) $1.44 \times 10^{-5} / (0.082 \times 773)$			
116.		hes dissociation equilibrium accord		$CHO \Rightarrow C_6 H_{12}O_6$. What is the		
	-	ilibrium if equilibrium constant is		()) 1 (10 ⁻⁴)/		
	(a) $1.6 \times 10^{-8} M$	(b) $3.2 \times 10^{-6} M$	(c) $3.2 \times 10^{-4} M$	(d) $1.6 \times 10^{-4} M$		
117.		<i>HI</i> , I_2 and H_2 is 0.7, 0.1 and 0.1 <i>M</i>	respectively. The equilibrium co	instant for the reaction,		
	$I_2 + H_2 \rightleftharpoons 2HI$ is					
	(a) 36	(b) 49	(c) 0.49	(d) 0.36		
118.		$_2 \approx 2NH_3$, K_c at 1000K is 2.37×1000	0^{-3} . If at equilibrium $[N_2] = 2M$	$[H_2] = 3M$, the concentration of		
	NH_3 is		() 0.250 M	()) 25014		
110	(a) $0.00358 M$	(b) 0.0358 <i>M</i> <i>B</i> ; if the equilibrium concentration ((c) $0.358 M$	(d) $3.58 M$		
119.	In the equilibrium $AB = A + B$	b; if the equilibrium concentration (of A is doubled, the equilibrium c	oncentration of <i>B</i> would become		
	(a) Twice	(b) Half	(c) $1/4^{\text{th}}$	(d) 1/8 th		
120.	In the reaction $A+B \Rightarrow 2C$, at e	quilibrium, the concentration of A a	and <i>B</i> is 0.20 <i>mol</i> l^{-1} each and the	at of <i>C</i> was found to be $0.60 \ mol \ l^{-1}$.		
	The equilibrium constant of the					
	(a) 2.4	(b) 18	(c) 4.8	(d) 9		
121.				uilibrium stage 60% of SO_2 is used		
		s of SO_2 , O_2 and SO_3 in the vess				
100	(a) 10.0	(b) 8.5	(c) 10.5	(d) 3.9		
122.	$10 \ dm^2$ of N_2 gas and $10 \ dm$	i^3 of gas X at the same temperatur	e and pressure contain the same	number of molecules. The gas X is		
	(a) <i>NO</i>	(b) <i>H</i> ₂	(c) CO_2 or CO	(d) All of these		
123.	The K _a for $H_{2(q)} + I_{2(q)} \Rightarrow 2H$	-	-	its original volume, the value of the		
	equilibrium constant will be	(8)				
	(a) 28	(b) 64	(c) 32	(d) 16		
124.	A reversible reaction $H_2 + C$	$Cl_2 = 2HCl$ is carries out in one li	tre flask. If the same reaction i	is carried out in two litre flask, the		
	equilibrium constant will be					
405	(a) Decreased	(b) Doubled	(c) Halved	(d) Same		
125.	.0,			umber of moles of $NO_{2(g)}$ present. If		
		$VO_{2(g)}$ ($K_p = 0.14$) is reached after				
	(a) 1.8×10^2	(b) 2.8×10^2	(c) 0.034	(d) 2.8×10^{-2}		
126.	NH is heated at 15 atm fro	m $27^{\circ}C$ to $347^{\circ}C$ assuming vol	ume constant. The new pressure	e becoming 50 atm at equilibrium of		
120.	-	H_2 : calculate. % of mole of NH_3 as		becoming 50 atm at equilibrium of		
	(a) 65%	(b) 61.3%	(c) 62.5%	(d) 64%		
127.		s two times that of reverse reaction				
				T		
	(a) 2.5	(b) 2.0	(c) 0.5	(d) 1.5		
128.	In a reversible reaction two sube	ubstances are in equilibrium. If the	concentration of each one is dou	bled, the equilibrium constant will		
	~~					

	(a) Reduced to half its original value (b) Reduced to one fourth of its original value
120	(c) Doubled (d) Constant In the reaction $PCI \rightarrow PCI \rightarrow CI$
129.	In the reaction $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$.
	The equilibrium concentrations of PCl_5 and PCl_3 are 0.4 and 0.2 <i>mole/litre</i> respectively. If the value of K_c is 0.5 what is the concentration of Cl_2 in <i>moles/litre</i>
	(a) 2.0 (b) 1.5 (c) 1.0 (d) 0.5
130.	One mole of a compound <i>AB</i> reacts with one mole of a compound <i>CD</i> according to the equation $AB + CD \Rightarrow AD + CB$ Whom equilibrium
	had been established it was found that $\frac{3}{4}$ mole each of reactant <i>AB</i> and <i>CD</i> had been converted to <i>AD</i> and <i>CB</i> . There is no change in
	7
	volume the equilibrium constant for the reaction is
	(a) $\frac{9}{16}$ (b) $\frac{1}{9}$ (c) $\frac{16}{9}$ (d) 9
131.	For the reaction equilibrium $N_2O_4 = 2NO_{2(g)}$, the concentrations of N_2O_4 and NO_2 at equilibrium are 4.8×10^{-2} and
	1.2×10^{-2} mol litre ⁻¹ respectively. The value of K_c for the reaction is
	(a) $3.3 \times 10^2 \text{ mol litre}^{-1}$ (b) $3.3 \times 10^{-1} \text{ mol litre}^{-1}$ (c) $3 \times 10^{-3} \text{ mol litre}^{-1}$ (d) $3.3 \times 10^3 \text{ mol litre}^{-1}$
132.	$CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$ which of the following expression is correct
	(a) $K_p = (P_{CaO} + P_{CO_2} / P_{CaCO_3})$ (b) $K_p = P_{CO_2}$
	(c) $K_p \times (P_{CaO} \times P_{CO_2}) \cdot P_{CaCO_3}$ (d) $\frac{K_p [CaO][CO_2]}{[CaCO_2]}$
133.	For the gas phase reaction $2NO = N_2 + O_2 : \Delta H^0 = -43.5 \ kcal \ mol^{-1}$ which one of the statements below is true for
	$N_{2(g)} + O_{2(g)} = 2NO_{(g)}$
	 (a) K is independent of T (b) K increases as T decreases (c) K decreases as T decreases (d) K varies with addition of NO
134.	 (c) <i>K</i> decreases as <i>T</i> decreases (d) <i>K</i> varies with addition of <i>NO</i> One mole of <i>SO</i>₃ was placed in a litre reaction vessel at a certain temperature. The following equilibrium was established
	$2SO_3 = 2SO_2 + O_2$ at equilibrium. 0.6 moles of SO_2 were formed. The equilibrium constant of the reaction will be
	(a) 0.36 (b) 0.45 (c) 0.54 (d) 0.67
135.	The equilibrium constant for the reaction $CaSO_4.5H_2O(s) \square CaSO_4.3H_2O(s) + 2H_2O(g)$ is equal to
	(a) $\frac{[CaSO_4.3H_2O][H_2O]^2}{[CaSO_4.5H_2O]}$ (b) $\frac{[CaSO_4.3H_2O]}{[CaSO_4.5H_2O]}$ (c) $[H_2O]^2$ (d) H_2O
136.	1 mole of hydrogen and 2 moles of iodine are taken initially in a 2 liltre vessel. The number of moles of hydrogen at equilibrium is 0.2.
	Then the number of moles of iodine and hydrogen iodide at equilibrium are(a) 1.2, 1.6(b) 1.8, 1.0(c) 0.4, 2.4(d) 0.8, 2.0
137.	1 mole of N_2 and 2 moles of H_2 are allowed to react in a 1 dm^3 vessel. At equilibrium 0.8 mole of NH_3 is formed. The concentration
	of H_2 in the vessel is
	(a) 0.6 mole (b) 0.8 mole (c) 0.2 mole (d) 0.4 mole
138.	If concentrations of N_2 , H_2 and NH_3 are 1, 2 and 3 respectively. Their concentration at equilibrium will be
	$N_2 + 3H_2 \square 2NH_3$
	(a) $(1-x)$ $(2-3x)$ $2x$
	(b) $\left(1-\frac{x}{3}\right)$ $(2-x)$ $\frac{2x}{3}$
	(c) $(1-x)$ $(2-x)$ $(3+x)$
	(d) $(1-x)$ $(2-3x)$ $(3+2x)$
139.	When 3 moles of ethyl alcohol are mixed with 3 moles of acetic acid, 2 moles of ester are formed at equilibrium according to the equation $CH_3COOH(l) + C_2H_5OH(l) \Box CH_3COOC_2H_5(l) + H_2O(l)$. The value of the equilibrium constant for the reaction is
	(a) 4 (b) 2/9 (c) 2 (d) 4/9

140.		mole of ' <i>A</i> ', 3.0 mole of 'B' and 2.0		ask and equilibrium
	concentration of ' <i>C</i> ' is 0.5 mole (a) 0.073	e/L. The equilibrium constant (K) fo (b) 0.147	r the reaction is (c) 0.05	(d) 0.026
141.	In a reaction $A + B \square C + D$, the	ne initial concentrations of A and B	were 0.9 <i>mol.</i> dm^{-3} each. At equa	ilibrium the concentration of <i>D</i> was
	found to be 0.6 mole dm^{-3} . W	hat is the value of equilibrium cons	tant for the reaction	
	(a) 8	(b) 4	(c) 9	(d) 3
142.	At a given temperature, the eq	uilibrium constant for the reactions	$S NO(g) + \frac{1}{2}O_2(g) \square NO_2(g)$ and	$2NO_2(g) \square 2NO(g) + O_2(g)$ are K_1
	and K_2 respectively. If K_1 is	4×10^{-3} , then K_2 will be		
	(a) 8×10^{-3}	(b) 16×10^{-3}	(c) 6.25×10^4	(d) 6.25×10^6
143.	If the equilibrium constant for	the reaction $2AB \square A_2 + B_2$ is 49. V	What is the value of equilibrium c	constant for $AB \Box \frac{1}{2}A_2 + \frac{1}{2}B_2$
	(a) 49	(b) 2401	(c) 7	(d) 0.02
144.		$(g) + B(g) \Box X(g) + Y(g)$ occurring in forward and the backward reaction		nstants are 2.0×10^{-2} and
	(a) 4.0×10^{-4}	(b) 2.5×10^{-6}	(c) 2.5×10^5	(d) 4.0×10^{-6}
145.	For the reaction, $2NO_2(g) \square 2$.	$NO(g) + O_2(g) K_c = 1.8 \times 10^{-6} \text{ at } 18$	35° C, the value of K_c for the read	ttion, $NO + \frac{1}{2}O_2 \Box NO_2$ is
	(a) 0.9×10^6		(c) 1.95×10^{-3}	(d) 1.95×10^3
146.	Equilibrium concentration of $I_2 + H_2 \Box 2HI$	<i>HI</i> , I_2 and H_2 is 0.7, 0.1, and 0.1 m	noles/litres. Calculate equilibriun	n constant for the reaction
	(a) 0.36	(b) 36	(c) 49	(d) 0.49
147.	Equilibrium constant K_p for the	ne following equilibrium is $CO_2(g)$ -	$+C(s) \square 2CO(g)$	
	(a) $K_p = \frac{p^2 co}{p_{CO_2} p_C}$	(b) $K_p = \frac{2p_{CO}}{p_{CO_2}p_C}$	(c) $K_p = \frac{p^2 co}{p_{cO_2}}$	(d) $K_p = \frac{\sqrt{p_{CO}}}{p_{CO_2}}$
148.	The equilibrium constant K_c f	for the reaction of H_2 with I_2 is 57	7.0 at 700 K, $H_2(g) + I_2(g) = \frac{1}{2}I_2$	<i>HI</i> ; $K_c = 57$ at 700 K
	Select correct statement		ĸ _b	
	(a) Rate constant k_f for the f	ormation of <i>HI</i> is smaller than that	of rate constant k_b of the dissoc	iation of HI
	(b) $k_f > k_b$			
	(c) Addition of catalyst increa	ases value of K_c		
	(d) Addition of catalyst decre	ases value of K_c		
149.	The equilibrium constant K_p	for the reaction, $2SO_2(g) + O_2(g)$	$2SO_3(g)$, is 4.0 atm^{-1} at 1000 K	. What would be the partial
	pressure of O_2 if at equilibriu	m the amount of SO_2 and SO_3 is	the same	
	(a) 16.0 atm	(b) 0.25 atm	(c) 1 atm	(d) 0.75 atm
150.		the reaction H_3BO_3 + glycerine \Box ($(H_3BO_3. \text{glycerine})$ is 0.90. Glycer	ine present per liter of 0.1 <i>M</i>
		BO_3 into $(H_3BO_3$. glycerine) is		
	(a) 0.167 M	(b) 1.73 M	(c) 0.0167 M	(d) 10.67 M

				2		
151.	1	e equilibrium constant is written as				1
	(a) $MX_3 \Box MX_2 + \frac{1}{2}X_2$	(b) $2MX_3 \Box 2MX_2 + X_2$	(c)	$2MX_2 + X_2 \Box 2MX_3$	(d)	$MX_2 + \frac{1}{2}X_2 \Box MX_3$
152.	K_1 and K_2 are equilibrium con	nstant for reactions (i) and (i)				
	$N_2(g) + O_2(g) \Box 2NO(g)$			(i)		
	$NO(g) \Box \frac{1}{2} N_2(g) + \frac{1}{2} O_2(g)$			(ii)		
	Then,					
	(a) $K_1 = \left(\frac{1}{K_2}\right)^2$	(b) $K_1 = K_2^2$	(c)	$K_1 = \frac{1}{K_2}$	(d)	$K_1 = (K_2)^o$
153.	 The value of equilibrium constant (a) Increases with increases of (b) Decreases with increases of (c) Is independent of temperation (d) Sufficient information is not 	f temperature of temperature	5.			
		Level	-1			
154.	For the reaction $CO(g) + 2H_2(g)$	$g = CH_3OH(g)$ true condition is				
	(a) $K_p = K_c$	(b) $K_p > K_c$	(c)	$K_p < K_c$	(d)	$K_c = 0$ but $K_p \neq 0$
155.	The relation between equilibriu	um constant K_p and K_c is				
	(a) $K_c = K_p (RT)^{\Delta n}$	(b) $K_p = K_c (RT)^{\Delta n}$	(c)	$K_p = \left(\frac{K_c}{RT}\right)^{\Delta h}$	(d)	$K_p - K_c (RT)^{\Delta n}$
156.	For $N_2 + 3H_2 \rightleftharpoons 2NH_3 + \text{heat}$					
	(a) $K_p = K_c$	(b) $K_p = K_c(RT)$	(c)	$K_p = K_c (RT)^{-2}$	(d)	$K_p = K_c (RT)^{-1}$
157.	In which of the following equili	bria, the value of K_p is less than K	c			
	(a) $H_2 + I_2 \rightleftharpoons 2HI$	(b) $N_2 + 3H_2 \rightleftharpoons 2NH_3$	(c)	$N_2 + O_2 \rightleftharpoons 2\text{NO}$	(d)	$CO + H_2O \rightleftharpoons CO_2 + H_2$
158.	In which one of the following g	aseous equilibria K_p is less than K	с			
	(a) $N_2O_4 \rightleftharpoons 2NO_2$	(b) $2HI = H_2 + I_2$	(c)	$2SO_2 + O_2 \rightleftharpoons 2SO_3$	(d)	$N_2 + O_2 \Rightarrow 2NO$
159.	For which of the following reac	1				
	(a) $2NOCl(g) \Rightarrow 2NO(g) + Cl_2$	(g)		$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	y)	
	(c) $H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$		(d)	$N_2O_4(g) \rightleftharpoons 2NO_2(g)$		
160.	For the reaction $PCl_{5(g)} \Rightarrow PC$					
	(a) $K_p = K_c$	(b) $K_p = K_c (RT)^{-1}$	(c)	$K_p = K_c (RT)$	(d)	$K_p = K_c (RT)^2$
161.	For the following gaseous react	tion $H_2 + I_2 \Rightarrow 2HI$, the equilibrium	n con	stant		
	(a) $K_p > K_c$	(b) $K_p < K_c$	(c)	$K_p = K_c$	(d)	$K_p = 1 / K_c$
162.	For which one of the following	1				
	(a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$		(c)	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$	(d)	$2SO_3 \rightleftharpoons 2SO_2 + O_2$
163.	In which of the following case	•				
	(a) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$		(c)	$2SO_2 + O_2 \rightleftharpoons 2SO_3$	(d)	All of these
164.	Consider the imaginary equilibre	rium				
	$4A + 5B \Rightarrow 4X + 6Y$					
	The equilibrium constant K_c h	as the unit				

	(a) $Mole^2 litre^{-2}$	(b) Litre mole $^{-1}$	(c)	Mole litre ⁻¹	(d)	$Litre^2$ mole ⁻²
165.	At 700 <i>K</i> , the equilibrium	constant K_p for the reaction	250	$O_{3(g)} \Rightarrow 2SO_{2(g)} + O_{2(g)}$ is	1.80	0×10^{-13} and Kp_a is 14.
	$(R = 8.314 Jk^{-1} mol^{-1})$. The n	umerical value in moles per litre of	K_c for	or this reaction at the same	temp	erature will be
	(a) 3.09×10^{-7} mol-litre	(b) 5.07×10^{-8} mol-litre	(c)	8.18×10^{-9} mol-litre	(d)	$9.24 imes 10^{-10}$ mol-litre
166.	Δn , the change in the number of	of moles for the reaction, $C_{12}H_{22}O_1$	1(s) + 1	$12O_{2(g)} \rightleftharpoons 12CO_{2(g)} + 11H_2CO_{2(g)} + 11H_2CO_{2(g)} = 12CO_{2(g)} = 12CO_{2(g)$	O _(l) at	$25^{\circ}C$ is
	(a) 0	(b) 2	(c)		(d)	-1
167.	The correct relation between a	K_p and K_c for the reaction $aX + bY$	$' \Rightarrow bZ$	C + aW is		
	(a) $K_p = K_c (RT)^{a+b}$	(b) $K_p = \frac{K_c}{(a+b)^2}$	(c)	$K_p = K_c(RT)$	(d)	$K_p = K_c$
168.	For the reaction $H_{2(g)} + I_{2(g)} =$	$= 2HI_{(g)}$, the equilibrium constant c	hange	es with		
	(a) Total pressure			Catalyst		
1.0	(c) The amounts of H_2 and I		(d)	Temperature		
169.	Consider the equilibrium react $H_3PO_4 \xleftarrow{K_1} H^+ + H_2PO_4^-$	10NS				
	$H_3PO_4 \longleftarrow H + H_2PO_4$ $H_2PO_4 \longleftarrow H^+ + HPO_4^{-2}$					
	2 + • +					
	$HPO_4^{-2} \stackrel{K_3}{\longleftarrow} H^+ + PO_4^{-3}$					
	The equilibrium constant <i>K</i> for $H_3PO_4 \longrightarrow 3H^+ + PO_4^{-3}$ is	the following dissociation				
		(b) K_1, K_2, K_3	(c)	$K_2 / K_1 K_3$	(d)	$K_1 + K_2 + K_3$
170.		$(5) K_1, K_2, K_3$ g) + 3 $H_{2(g)}$ the unit of K_p will be	(c)	$\mathbf{x}_2 / \mathbf{x}_1 \mathbf{x}_3$	(u)	K ₁ + K ₂ + K ₃
	(a) <i>atm</i>	(b) $(atm)^3$	(c)	$(atm)^{-2}$	(d)	$(atm)^2$
171.	In an exothermic reaction, a 10) ^{<i>o</i>} <i>C</i> rise in temperature will				
	(a) Decrease the value of equi	librium constant	(b)	Double the value of K_c		
	(c) Not produce any change in	n K _c	(d)	Produce some increase in	K _c	
172.	For the homogeneous gas react	tion, $4NH_3 + 5O_2 = 4NO + 6H_2O_2$), the	equilibrium constant K_c ha	is the	dimension of
	(a) conc ⁺¹⁰	(b) conc ⁺¹	(c)	conc ⁻¹	(d)	It is dimensionless
173.	In the gas phase reaction C_2H_2	$_4 + H_2 \rightleftharpoons C_2 H_6$, the equilibrium co	onstar	nt can be expressed in units	of	
	(a) $litre^{-1} mol^{-1}$	(b) $litremol^{-1}$	(c)	$mol^2 \ litre^{-2}$	(d)	mol litre ⁻¹
174.	For the reaction $2SO_2 + O_2 \rightleftharpoons$	$2SO_3$, the units of K_c are				
	(a) litre mol ^{-1}	(b) mol litr e^{-1}	(c)	$(mole \ litre^{-1})^2$	(d)	$\left(litremol^{-1} ight)^2$
175.	Two gaseous equilibria $SO_{2(g)}$	$+\frac{1}{2}O_{2(g)} \rightleftharpoons SO_{3(g)}$ and $2SO_{3(g)} \rightleftharpoons 2$	$2SO_{20}$	$_{g)} + O_{2(g)}$ have equilibrium of	consta	ants K_1 and K_2 respectively
		$\frac{2}{3}$ grelationships between K_1 and K_2				
			-			
	(a) $K_1 = K_2$	(b) $K_2 = K_1^2$	(c)	$K_2 = \frac{1}{K_1^2}$	(d)	$K_2 = \frac{1}{K_1}$
176.	The equilibrium constant for	the reversible reaction, $N_2 + 3$	$H_2 \rightleftharpoons$	$2NH_3$ is K and for the r	eactio	on $\frac{1}{2}N_2 + \frac{3}{2}H_2 \Rightarrow NH_3$ the
	equilibrium constant is K'. K an					Δ Δ
	(a) $K = K'$		(c)	$K = \sqrt{K'}$	(d)	$K \times K = 1$
	(-,	(-) - · · ·		•••	(u)	

		6×10^{-12} $NO + \frac{1}{2}O \rightarrow NO$	<i>K</i> ' = ?	
177.	$2NO_2 \rightleftharpoons 2NO + O_2; K = 1$	10^{-10} , 10^{-1}		
	(a) $K' = \frac{1}{K^2}$	(b) $K' = \frac{1}{K}$	(c) $K' = \frac{1}{\sqrt{K}}$	(d) None of these
78. e	If K_c is the equilibrium co	nstant for the formation of NH_2	3 . the dissociation constant of ar	mmonia under the same temperature w
	(a) <i>K</i> _c	(b) $\sqrt{K_c}$	(c) K_c^2	(d) $1 / K_c$
79.	If for $H_{2(s)} + \frac{1}{2}S_{2(s)} = H_2S$	$G_{(g)}$ and $H_{2(g)} + Br_{2(g)} \approx 2HBr_{(g)}$. The equilibrium constants are	e K_1 and K_2 respectively. the reacti
	$Br_{2(g)} + H_2 S_{(g)} \rightleftharpoons 2HBr_{(g)} +$	$\frac{1}{2}S_{2(s)}$ would have equilibrium	constant	
	(a) $K_1 \times K_2$	(b) K_1 / K_2	(c) K_2/K_1	(d) K_2^2 / K_1
80.	A chemical reaction was ca	rried out at 300 K and 280 K The	e rate constants were found to be	K_1 and K_2 respectively. Then
	(a) $K_2 = 0.25 K_1$		(c) $K_2 = 4K_1$	
81.	For $N_2 + 3H_2 \rightleftharpoons 2NH_3$ equ	uilibrium constant is <i>K</i> then equil	librium constant for $2N_2 + 6H_2$	$\Rightarrow 4NH_3$ is
	(a) \sqrt{K}	(b) K^2	(c) $K/2$	(d) $\sqrt{K+1}$
82.		quilibrium constant decreases w		
0.2	(a) Rise in temperature	(b) Decreases in pressure		
83.	1 2	1 Ioi the reaction $N_2 + 3H_2$	-21011_3 is K, then the equ	ulibrium constant for the equilibriu
	$NH_3 = \frac{1}{2}N_2 + \frac{3}{2}H_2$ is			
	$NH_3 = \frac{1}{2}N_2 + \frac{3}{2}H_2$ is (a) $1/K$	(b) $1/K^2$	(c) \sqrt{K}	(d) $\sqrt{1/K}$
			(c) √ <i>K</i> eve[-1	
84.	(a) 1/ <i>K</i>	L	evel-1	
84.	(a) $1/K$ For the reaction $H_2(g) + I_2$	L	eve[-1] f equilibrium constant (K_c) is 50	(d) $\sqrt{1/K}$
84.	(a) $1/K$ For the reaction $H_2(g) + I_2$ both is 0.5 <i>M</i> , the value of <i>H</i>	$(g) \Rightarrow 2HI(g)$ at 721 <i>K</i> the value o K_p under the same conditions with	eve[-1] f equilibrium constant (K_c) is 50 ill be	(d) $\sqrt{1/K}$ 0. When the equilibrium concentration of
	(a) $1/K$ For the reaction $H_2(g) + I_2$ both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002	$(g) \Rightarrow 2HI(g)$ at 721K the value o K_p under the same conditions with (b) 0.2	eve[-1] f equilibrium constant (K_c) is 50	(d) $\sqrt{1/K}$
	(a) $1/K$ For the reaction $H_2(g) + I_2$ both is 0.5 <i>M</i> , the value of <i>H</i>	$(g) \Rightarrow 2HI(g) \text{ at } 721K \text{ the value o}$ K_p under the same conditions with (b) 0.2 Praction $K_p > K_c$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0	(d) $\sqrt{1/K}$ 0. When the equilibrium concentration of
85.	(a) $1/K$ For the reaction $H_2(g) + I_2$ both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following reaction (a) $N_2 + 3H_2 = 2NH_3$	$L_{g} \Rightarrow 2HI(g) \text{ at } 721K \text{ the value o}$ $K_{p} under the same conditions with the same$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 = PCl_5$	(d) $\sqrt{1/K}$ (d) $\sqrt{1/K}$ (d) $50/RT$ (d) $2SO_3 = O_2 + 2SO_2$
85.	(a) $1/K$ For the reaction $H_2(g) + I_2$ both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following reaction (a) $N_2 + 3H_2 = 2NH_3$	$L_{g} \Rightarrow 2HI(g) \text{ at } 721K \text{ the value o}$ $K_{p} under the same conditions with the same$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 = PCl_5$	(d) $\sqrt{1/K}$). When the equilibrium concentration of (d) 50/ <i>RT</i>
85. 86.	(a) $1/K$ For the reaction $H_2(g) + I_2$ both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following re (a) $N_2 + 3H_2 \Rightarrow 2NH_3$ The value of K_p for the foll (a) 1.2×10^{-2} The reaction between N_2 a	$(g) \Rightarrow 2HI(g) \text{ at } 721K \text{ the value o}$ $(g) \Rightarrow 2HI(g) \text{ at } 721K \text{ the value o}$ $(b) 0.2$ $(b) 0.2$ $(b) 0.2$ $(b) H_2 + I_2 \Rightarrow 2HI$ $(b) H_2 + I_2 \Rightarrow 2HI$ $(b) (1.2 \times 10^{-2})$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 \rightleftharpoons PCl_5$ (g) + $S_2(g)$ is 1.2×10^{-2} at 1065 (c) 83	(d) $\sqrt{1/K}$ (d) $\sqrt{1/K}$ (d) $50/RT$ (d) $2SO_3 = O_2 + 2SO_2$ ^o <i>C</i> . The value of K_c for this reaction is
85. 86.	(a) $1/K$ For the reaction $H_2(g) + I_2$ both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following reaction (a) $N_2 + 3H_2 = 2NH_3$ The value of K_p for the following (a) 1.2×10^{-2} The reaction between N_2 at this reaction is	$(g) \neq 2HI(g) \text{ at } 721K \text{ the value of } K_p \text{ under the same conditions with } (b) 0.2$ exaction $K_p > K_c$ (b) $H_2 + I_2 \neq 2HI$ lowing reaction $2H_2S(g) \neq 2H_2$ (b) $< 1.2 \times 10^{-2}$ and H_2 to form ammonia has K_1	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 \Rightarrow PCl_5$ (g) + $S_2(g)$ is 1.2×10^{-2} at 1065 (c) 83 $T_c = 6 \times 10^{-2}$ at the temperature s	(d) $\sqrt{1/K}$ (d) $\sqrt{1/K}$ (e) When the equilibrium concentration of (f) $50/RT$ (f) $2SO_3 = O_2 + 2SO_2$ (f) $2SO_3 = O_2 + 2SO_2$ (g) $2SO_3 = O_2 + 2SO_2$ (g) $2SO_3 = O_2 + 2SO_2$ (g) $2SO_3 = O_2 + 2SO_2$ (h) $2SO_3 = O_2 $
85. 86.	(a) $1/K$ For the reaction $H_2(g) + I_2$; both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following re- (a) $N_2 + 3H_2 \Rightarrow 2NH_3$ The value of K_p for the fol- (a) 1.2×10^{-2} The reaction between N_2 at this reaction is (a) 1.5×10^{-5}	$L_{g}(g) \Rightarrow 2HI(g) \text{ at } 721K \text{ the value o}$ $K_{p} \text{ under the same conditions with } (b) 0.2$ $K_{p} = K_{c}$ $(b) H_{2} + I_{2} \Rightarrow 2HI$ $K_{p} = 2H_{2}$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 \Rightarrow PCl_5$ (g)+ $S_2(g)$ is 1.2×10^{-2} at 1065 (c) 83 $T_c = 6 \times 10^{-2}$ at the temperature at 1000 states at 10000 states at 10000 states at	(d) $\sqrt{1/K}$ (d) $\sqrt{1/K}$ (e) When the equilibrium concentration of (f) $50/RT$ (f) $2SO_3 = O_2 + 2SO_2$ (f) $2SO_3 = O_2 + 2SO_2$ (g) $> 1.2 \times 10^{-2}$
85. 86. 87.	(a) $1/K$ For the reaction $H_2(g) + I_2$: both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following reaction (a) $N_2 + 3H_2 = 2NH_3$ The value of K_p for the following reaction (a) 1.2×10^{-2} The reaction between N_2 as this reaction is (a) 1.5×10^{-5} K_p for the following reaction (a) 1.1×10^{-2}	$(g) \neq 2HI(g) \text{ at } 721K \text{ the value o}$ $(g) \neq 2HI(g) \text{ at } 721K \text{ the value o}$ $(b) 0.2$ $(b) 0.2$ $(b) H_2 + I_2 \neq 2HI$ $(b) H_2 + I_2 \neq 2HI$ $(b) < 1.2 \times 10^{-2}$ $(b) < 1.2 \times 10^{-2}$ $(b) 1.5 \times 10^5$ $(c) 1.5 \times 10^5$ $(c) 1.5 \times 10^{-3} atm^{-1} \cdot T$ $(c) 3.1 \times 10^{-2}$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 \Rightarrow PCl_5$ (g) + $S_2(g)$ is 1.2×10^{-2} at 1065 (c) 83 $T_c = 6 \times 10^{-2}$ at the temperature size (c) 1.5×10^{-6} The K_c at same temperature for (c) 5.2×10^{-2}	(d) $\sqrt{1/K}$ (d) $\sqrt{1/K}$ (e) When the equilibrium concentration of (f) $50/RT$ (g) $2SO_3 = O_2 + 2SO_2$ (g) $2SO_3 = O_2 + 2SO_2$ (g) $2SO_3 = O_2 + 2SO_2$ (g) $2SO_3 = O_2 + 2SO_2$ (h) $2SO_3 = O_2 $
85. 86. 87.	(a) $1/K$ For the reaction $H_2(g) + I_2$: both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following reaction (a) $N_2 + 3H_2 \Rightarrow 2NH_3$ The value of K_p for the following (a) 1.2×10^{-2} The reaction between N_2 at this reaction is (a) 1.5×10^{-5} K_p for the following reaction (a) 1.1×10^{-2} For a reaction if $K_p > K_c$, the following is the following reaction (b) $K_p = K_c$, the following is the following reaction is (c) 1.1×10^{-2}	$(g) \neq 2HI(g) \text{ at } 721K \text{ the value o}$ $(g) \neq 2HI(g) \text{ at } 721K \text{ the value o}$ $(b) 0.2$ $(b) 0.2$ $(b) H_2 + I_2 \neq 2HI$ $(b) H_2 + I_2 \neq 2HI$ $(b) < 1.2 \times 10^{-2}$ $(b) < 1.2 \times 10^{-2}$ $(b) 1.5 \times 10^5$ $(c) 1.5 \times 10^5$ $(c) 1.5 \times 10^{-3} \text{ atm}^{-1} \cdot T$ $(c) 3.1 \times 10^{-2}$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 \Rightarrow PCl_5$ (g)+ $S_2(g)$ is 1.2×10^{-2} at 1065 (c) 83 $T_c = 6 \times 10^{-2}$ at the temperature $f(c) = 1.5 \times 10^{-6}$ The K_c at same temperature for $f(c) = 5.2 \times 10^{-2}$ by	(d) $\sqrt{1/K}$ b. When the equilibrium concentration of (d) $50/RT$ (d) $2SO_3 = O_2 + 2SO_2$ ^o C. The value of K_c for this reaction is (d) $> 1.2 \times 10^{-2}$ 500 ^o C. The numerical value of K_p for (d) 1.5×10^6 the reaction $2SO_2 + O_2 = 2SO_3$ will b (d) 7.4×10^{-2}
85. 86. 87. 88.	(a) $1/K$ For the reaction $H_2(g) + I_2$: both is 0.5 <i>M</i> , the value of <i>H</i> (a) 0.002 In which of the following ref (a) $N_2 + 3H_2 = 2NH_3$ The value of K_p for the following (a) 1.2×10^{-2} The reaction between N_2 at this reaction is (a) 1.5×10^{-5} K_p for the following reaction (a) 1.1×10^{-2} For a reaction if $K_p > K_c$, at (a) Low pressure	$(g) \neq 2HI(g) \text{ at } 721K \text{ the value o}$ $(g) \neq 2HI(g) \text{ at } 721K \text{ the value o}$ $(b) 0.2$ $(b) 0.2$ $(b) H_2 + I_2 \neq 2HI$ $(b) H_2 + I_2 \neq 2HI$ $(b) < 1.2 \times 10^{-2}$ $(b) < 1.2 \times 10^{-2}$ $(b) 1.5 \times 10^5$ $(c) 1.5 \times 10^5$ $(c) 1.5 \times 10^{-3} atm^{-1} \cdot T$ $(c) 3.1 \times 10^{-2}$	evel-1 f equilibrium constant (K_c) is 50 ill be (c) 50.0 (c) $PCl_3 + Cl_2 \Rightarrow PCl_5$ (g) + $S_2(g)$ is 1.2×10^{-2} at 1065 (c) 83 $T_c = 6 \times 10^{-2}$ at the temperature state of C_c (c) 1.5×10^{-6} The K_c at same temperature for C_c (c) 5.2×10^{-2} by (c) High temperature	(d) $\sqrt{1/K}$ (d) $\sqrt{1/K}$ (e) When the equilibrium concentration of (f) $50/RT$ (f) $2SO_3 = O_2 + 2SO_2$ (g) 1.5×10^6 (g) 1.5×10^6 (he reaction $2SO_2 + O_2 = 2SO_3$ will be

191.	If K_P for a reaction, $A(g)$ +	$2B(g) \Box 3C(g) + D(g)$ is 0.05 atm	at 1000 K. Its K_c in terms of R w	
	(a) 20000 <i>R</i>	(b) 0.02 <i>R</i>	(c) $5 \times 10^{-5} R$	$(d) \frac{5 \times 10^{-5}}{R}$
192.	For reaction $PCl_3(g) + Cl_2$	$(g) \square PCl_5(g)$, the value of K_c at 2	$250^{\circ}C$ is 26. The value of K_P at	this temperature will be
	(a) 0.61	(b) 0.83	(c) 0.57	(d) 0.46
193.	K_C for the reaction $N_2(g)$	$+O_2(g) \Box 2NO(g)$ at 300 K is 4.0	$\times 10^{-6}$. K_P for the above reacti	on will be $(R = 2 \operatorname{cal} \operatorname{mol}^{-1} K^{-1})$
	(a) 2.4×10^{-3}	(b) 4×10^{-6}	(c) $4 \times 10^{-6} (RT)^2$	(d) 16×10^{-12}
194.	For the following equilibri	um, $N_2O_4(g) \square 2NO_2(g)$, K_P is f	ound to be equal to K_C . This is	attained when
	(a) $T=1K$	(b) $T = 12.18 K$	(c) $T = 27.3K$	(d) $T = 273 K$
195.	Naphthalene, a white solid equilibrium are $C_{10}H_8(g)$		pour pressure of 0.10 <i>mm Hg</i> at	$27^{\circ}C$. Hence, K_P and K_C for the
	(a) 0.10, 0.10	(b) 0.10, 4.1×10^{-3}	(c) $1.32 \times 10^{-4}, 5.34 \times 10^{-4}$	10^{-6} (d) $5.34 \times 10^{-6}, 1.32 \times 10^{-4}$
196.	$X: 2SO_2 + O_2 \square 2SO_3$ $Y: PCl_5 \square PCl_3 + Cl_2$ $Z: 2HI \square H_2 + I_2$	equilibria <i>X, Y</i> and <i>Z</i> at 300 K		
	ratio of K_P and K_C in the in	-		
	(a) $X = Y = Z$	(b) <i>X</i> < <i>Y</i> < <i>Z</i>	(c) <i>X</i> < <i>Z</i> < <i>Y</i>	(d) $Z < Y < X$
197.	For the reaction, $CO(g)$ +-	$\frac{1}{2}O_2(g) \square CO_2(g), K_P/K_c$ is		
	(a) <i>RT</i>	(b) $(RT)^{-1}$	(c) $(RT)^{-\frac{1}{2}}$	(d) $(RT)^{\frac{1}{2}}$
198.	_	equilibrium, it is observed that <i>K</i>	$T_P = K_C$. The equilibrium cannot be	d <i>D</i> , accompanied by the liberation of heat. e disturbed by
	(a) Adding A	(b) Adding D	(c) Raising the temper	.,
199.		to the equilibrium system, ice	01	••
	(a) More ice will be forme		(b) Water will evapora	
	(c) More water will be-fo		(d) Equilibrium will no	
_		L	evel-1	
200.		ble reaction, the correct explanat		
		tion path of low activation energy		etic energy of reacting molecules
201.	(c) It displaces the equilibrium of the reaction $N_{\rm e}Q_{\rm e}=$	_		ocity of backward reaction er of molecules at equilibrium will be
201.	If in the reaction $N_2O_4 =$	$2NO_2$, a is that part of N_2O_4 v	inen dissociates, then the hund	er of molecules at equilibrium will be
202.	(a) 3In a reversible reaction, th(a) Increases the activation	(b) 1 e catalyst on energy of the backward reactio	(c) $(1-\alpha)^2$	(d) $(1 + \alpha)$
	(b) Increases the activation(c) Decreases the activation	on energy of the forward reaction on energy of both forward and ba on energy of forward reaction		
203.	A reaction attains equilibri	um when the free energy change		
204.	(a) Positive and large The vapour density of com	(b) Zero pletely dissociated NH_4Cl woul	(c) Negative and large d be	(d) Negative and small
	(a) Slight less than half th			
	(b) Half that of NH_4Cl n			
	T			

	(c) Double that of NH_4Cl (d) Determined by the amount	of solid NH_4Cl in the experimen	t	
205.		ts vapour at its boiling point. The m		equal
	(a) Potential energy	(b) Kinetic energy	(c) Vander Waal's forces	(d) Total energy
		Level	-2	
206.	The vapour density of N_2O_4 at	t a certain temperature is 30. What	is the percentage dissociation o	f N_2O_4 at this temperature
	(a) 53.3%	(b) 106.6%	(c) 26.7%	(d) None of these
207.	-	16 but when heated to $230^{\circ}C$ its	vapour density is reduced to 62	. The degree of dissociation of PCl_5
	at this temperature will be (a) 6.8%	(b) 68%	(c) 46%	(d) 64%
208.				
	(a) $\Delta G^o = 0$	(b) $\Delta G^o > 1$	(c) $\Delta G^o < 1$	(d) None of these
209.		= 0 under conditions of constant		
210	(a) T and P	(b) <i>T</i> and <i>V</i>	(c) E and V	(d) P and V
210.		ooling it be comes less coloured. Th		the flask is heated at $100^{\circ}C$ the existence is
	(a) Negative	(b) Positive	(c) Zero	(d) Undefined
211.		here ΔH represents the enthalpy o	f the reaction in <i>kJ/mol</i> the min	imum value for energy of activation
	will be (a) Less than ΔH	(b) Zero	(c) More than ΔH	(d) Equal to ΔH
212.		if α is the degree of dissociation o		
	then at equilibrium the total nu	mber of moles of N_2O_4 and NO_2	present is	
	(a) 2	(b) $1 - \alpha$	(c) $(1-\alpha)^2$	(d) $1 + \alpha$
213.		nitrogen tetroxide $N_2O_4(g) \rightarrow 2N$	$IO_{2}(g)$ at temperature T and tot	
		ression for the equilibrium constan		1
	(a) $2\alpha / (1 - \alpha^2)$	(b) $\alpha^2 P / (1-\alpha)$	(c) $4\alpha^2 / (1 - \alpha^2)$	(d) $4\alpha^2 P / (1 - \alpha^2)$
214.		chloride were taken in a closed ves		
	equilibrium, the total number o (a) 0.33	f moles of the reactant and the pro- (b) 0.165	ducts was 2.53. The degree of di (c) 0.15	ssociation is (d) 0.30
215.	In the dissociation of N_2O_4 int	to NO_2 , $(1 + x)$ values with the values	pour densities ratio $\left(\frac{-}{d}\right)$ as giv	en by
		\uparrow	ÎΙ (1
	(a) ^(1+x)	(b) $(1+x)$	(c) $(1+x)$	(d) $(1+x)$
			D	 D
	$\frac{1}{d} \longrightarrow$	$\frac{d}{d}$	$\frac{1}{d}$	$\frac{1}{d}$
216.	In the above question, x varies v	with $\frac{D}{d}$ according to		
	\uparrow	$a \uparrow 1$	\uparrow \mid \sim	↑ L
	(a) X		(c) X	
		(b) X	(c) X	(d) X
	$\frac{D}{d} \longrightarrow$	$\frac{D}{d} \longrightarrow$	$\frac{D}{d} \longrightarrow$	$\frac{D}{d} \longrightarrow$
217.	<i>a</i> For a very small extent of disso	ciation of PCl_5 into PCl_3 and Cl_2	is a gaseous phase reaction the	n degree of dissociation <i>x</i>
	(a) $x \propto P$	(b) $x \propto \frac{1}{P}$	(c) $x \propto \sqrt{P}$	(d) $x \propto \sqrt{\frac{1}{P}}$
		(°) × ° P		V P

218. For a reaction $nA \square A_n$, degree of dissociation when A trimerises is

		- ()	(c) $\frac{4}{3}\left(\frac{d-D}{d}\right)$	
219.		, if degrees of dissociation of <i>i</i>	N_2O_4 are 25%, 50%, 75% and 10	0%, the gradation of observed vapour
	densities is (a) $d_1 > d_2 > d_3 > d_4$	(b) $d_4 > d_3 > d_2 > d_1$	(c) $d_1 = d_2 = d_3 = d_4$	(d) None of these
220.	The equation $\alpha = \frac{D-d}{(n-1)d}$ is c	orrectly matched for		
	(a) $A \square nB/2 + nC/3$	(b) $A \square nB / 3 + (2n / 3)C$	(c) $A \longrightarrow (n/2)B + (n/2)B$	4) <i>C</i> (d) $A \square (n/2)B + C$
221.	For the reaction $N_2 + O_2 \Box 2N$	<i>O</i> equilibrium constant $K_c =$	2 . Degrees of dissociation of $N_2^{}$	and O_2 are
	(a) $\frac{1}{1+\sqrt{2}}$, $\frac{1}{1-\sqrt{2}}$	(b) $\frac{1}{1-\sqrt{2}}$, $\frac{1}{1-\sqrt{2}}$	(c) Both are $\frac{1}{1+\sqrt{2}}$	(d) $\frac{2}{1+\sqrt{2}}$, $\frac{2}{1-\sqrt{2}}$
	$1+\sqrt{2}$ $1-\sqrt{2}$			$1+\sqrt{2}$ $1-\sqrt{2}$
		Le	vel-1	
222.	$N_2 + O_2 \Rightarrow 2NO - Q$ cal, In the	above reaction which is the es	sential condition for the higher pr	roduction of <i>NO</i>
	(a) High temperature	(b) High pressure	(c) Low temperature	(d) Low pressure
223.	Which of the following is not fa	wourable for SO_3 formation 2	$2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g); \Delta H =$	= – 45.0 <i>kcal</i>
	(a) High pressure		(b) High temperature	
224	(c) Decreasing SO_3 concentre Which of the following reaction		(d) Increasing reactant co	oncentration
224.	Which of the following reaction (a) $N_2 + 3H_2 = 2NH_3$		(c) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$	(d) $N + O \rightarrow 2NO$
225.	2 2 9		$(c) I \ c_{15} \leftarrow I \ c_{13} + c_{12}$	(u) $N_2 + O_2 \leftarrow 2NO$
225.	Le-Chatelier principle is applic(a) Both for physical and cher		(b) Only for chemical equ	ilibrium
	(c) Only for physical equilibri		(d) Neither for (b) nor for	
226.	In the following reversible read	ction, $2SO_2 + O_2 = 2SO_3 + QO_2$	cal . Most suitable condition for th	ne higher production of SO_3 is
	(a) High temperature and hig		(b) High temperature and	
	(c) Low temperature and high		(d) Low temperature and	l low pressure
227.	When the pressure is applied of	over system ice \Rightarrow water; what		
	(a) More water will form		(b) More ice will form	
	(c) There will be no effect ove	-	(d) Water will decompose	
228.	In the reaction $A(g) + 2B(g) \rightleftharpoons$	C(g) + Q kJ. greater product wi	ll be obtained or the forward read	ction is favoured by
	(a) At high temperature and h	nigh pressure	(b) At high temperature a	and low pressure
	(c) At low temperature and h	igh pressure	(d) At low temperature a	nd low pressure
229.	The reaction $CaCO_3 \rightleftharpoons CaO +$	$CO_2(g)$ goes to completion in	lime kiln because	
	(a) Of the high temperature		(b) <i>CaO</i> is more stable that	an CaCO ₃
	(c) <i>CaO</i> is not dissociated		(d) CO_2 escapes continu	iously
230.	In the gaseous equilibrium H_2	X_2 + heat \Rightarrow 2 <i>HX</i> , the formatio	n of <i>HX</i> will be favoured by	
	(a) High pressure and low ter	nperature	(b) High temperature and	d low pressure
	(c) Low temperature and low	pressure	(d) High temperature and	l high pressure
231.	Reaction in which yield of proc	luct will increases with increas	e in pressure is	
	(a) $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$		(b) $H_2 O_{(g)} + C O_{(g)} \approx C O$	$P_{2(g)} + H_{2(g)}$
	(c) $H_2 O_{(g)} + C_{(s)} \rightleftharpoons CO_{(g)} + H$	2(g)	(d) $CO_{(g)} + 3H_{2(g)} \rightleftharpoons CH$	$H_{4(g)} + H_2 O_{(g)}$
232.	In reaction $N_{2(q)} + 3H_{2(q)} \rightleftharpoons 2$.	$NH_{3(q)}$; $\Delta H = -93.6 k$, the vield	l of ammonia does not increase v	vhen
	$2(\delta)$ $2(\delta)$	5(8)		

	(a) Pressure is increased	(b)	Temperature is lowered							
	(c) Pressure is lowered		Volume of the reaction vessel is decreased							
233.	Which of the following conditions is favourable for the production	of am	ımonia by Haber's process							
	(a) High concentration of reactants	(b)	Low temperature and high pressure							
	(c) Continuous removal of ammonia (d)	All t	All the above							
234.	According to Le - Chatelier's principle, which of the following factor	rs influence a chemical system								
	(a) Concentration only	(b)	Pressure only							
	(c) Temperature only	(d)	Concentration, pressure and temperature							
235.	Which of the following changes would decrease the dissociation of	PCl ₅	5 in the reaction $PCl_5 = PCl_3 + Cl_2$							
	(a) Decrease in pressure	(b)	Increase in pressure							
	(c) Addition of an inert gas at constant volume	(d)	Addition of an inert gas at constant pressure							
236.	Formation of SO_3 takes place according to the reaction $2SO_2 + O_3$	$P_2 \Rightarrow 2$	$2SO_3$; $\Delta H = -45.2$ kcal. Which of the following factors favours							
	the formation of SO_3									
	(a) Increase in temperature (b) Increase in pressure		Removal of oxygen (d) Increase in volume							
237.	Which of the following information can be obtained on the basis of	Le - c	chatelier's principle							
	(a) Entropy change in a reaction	(b)	Dissociation constant of a weak acid							
	(c) Equilibrium constant of a chemical reaction		Shift in equilibrium position on changing value of a constant							
238.	The equilibrium $SO_2Cl_{2(g)} = SO_{2(g)} + Cl_{2(g)}$ is attained at $25^{\circ}C$ i	n a cl	losed container and an inert gas helium is introduced which of							
	the following statement is correct									
	(a) More chlorine is formed	(b)	Concentration of SO_2 is reduced							
	(c) More SO_2Cl_2 is formed		Concentration of SO_2Cl_2 , SO_2 and Cl_2 does not change							
239.	Sodium sulphate dissolves in water with evolution of heat. Consid									
207.	raised, then according to Le - chatelier principle	uer u	such accussion of sources supplace. If the temperature is							
	(a) More solid will dissolve	(b)	Some solid will precipitate out from the solution							
	(c) The solution will become super saturated	(d)	Solution concentration will remain unchanged							
240.	Le-chatelier's principle is applicable only to a									
	(a) System in equilibrium (b) Irreversible reaction	(c)	Homogeneous reaction (d) Heterogeneous reaction							
241.	$H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)} \Delta H = +q \ cal$, then formation of HI									
	(a) Is favoured by lowering the temperature	(b)	Is favoured by increasing the temperature							
	(c) Is unaffected by change in pressure		Is unaffected by change in temperature							
242.	Which of the following equilibrium is not shifted by increase in the	pres	sure							
	(a) $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ (b) $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$	(c)	$2CO_{(g)} + O_{2(g)} \rightleftharpoons 2CO_{2(g)}$ (d) $2C_{(s)} + O_{2(g)} \rightleftharpoons 2CO_{(g)}$							
243.	According to Le - chatelier's principle adding heat to a solid and liq	uid ir	n equilibrium with endothermic nature will cause the							
	(a) Temperature to rise		Temperature to fall							
	(c) Amount of solid to decrease		Amount of liquid to decrease							
244.	A solute is soluble in two immiscible liquids which are present in m will be	nixtur	re. The concentration of the solute in upper layer of mixture							
	(a) Same as in the lower layer	(b)	Less than in the lower layer							
	(c) More than in the lower layer lower layer		(d) In fixed ratio with that in the							
245.	In the equilibrium $N_2 + 3H_2 = 2NH_3 + 22 \ kcal$, the formation of a	ammo	onia is favoured by							
	(a) Increasing the pressure (b) Increasing the temperature		Decreasing the pressure (d) Adding ammonia							
		.,								

Under what conditions of temperature and pressure the formation of atomic hydrogen from molecular hydrogen will be favoured 246. most (a) High temperature and high pressure (b) Low temperature and low pressure (c) High temperature and low pressure (d) Low temperature and high pressure **247.** The formation of nitric oxide by contact process $N_2 + O_2 = 2NO$. $\Delta H = 43.20$ kcal is favoured by (a) Low temperature and low pressure (b) Low temperature and high pressure (d) High temperature and excess reactants concentration (c) High temperature and high pressure **248.** Consider the reaction equilibrium, $2SO_{2(g)} + O_{2(g)} \Rightarrow 2SO_{3(g)}$; $\Delta H^0 = -198 \ kJ$. On the basis of Le - chatelier's principle, the condition favourable for the forward reaction is (a) Lowering of temperature as well as pressure (b) Increasing temperature as well as pressure (c) Lowering the temperature and increasing the pressure (d) Any value of temperature and pressure 249. Which statement is correct about Henry's law (a) The amount of gas dissolved per unit volume of solvent is directly proportional to pressure of gas (b) The volume of gas dissolved per unit volume of solvent is independent of pressure of gas (c) The law is valid only when the gas dissolved neither dissociates nor associates in solvent (d) All are correct 250. Le - chatelier's principle is valid for (a) Formation of moles (b) Rectification of dilute alcohol (d) Manufacture of acid by vinegar process (c) Manufacture of H_2SO_4 by contact process 251. Le - chatelier's principle suggests (a) If system in equilibrium is subjected to a change of concentration, pressure or temperature, the equilibrium shifts in the direction that tends to under the effect of change (b) Applicable to all types of dynamic equilibrium (c) Given to study the effect of state variables on the equilibrium (d) All are correct 252. Solubility of gas in liquid increases on (a) Increasing the pressure (b) Decreasing the pressure (c) Addition of catalyst (d) Increasing the temperature **253.** The gaseous reaction $A + B \rightleftharpoons 2C + D$; + Q is most favoured at (a) Low temperature and high pressure (b) High temperature and high pressure (c) High temperature and low pressure (d) Low temperature and low pressure 254. Raising the temperature of an equilibrium system (a) Favours the exothermic reaction only (b) Favours the endothermic reaction only (c) Favours both the exothermic and endothermic reactions (d) Favours neither the exothermic nor endothermic reactions **255.** The equilibrium $2SO_{2(g)} + O_{2(g)} = 2SO_{3(g)}$ shifts forward, if (a) A catalyst is used (b) An Adsorbent is used to remove SO_3 as soon as it is formed (c) Large amounts of reactants are used (d) Small amounts of reactants are used **256.** Raising the temperature of a reversible chemical reaction (a) Favours the forward rate only (b) Favours the backward rate only (c) Favours both the forward and backward rates (d) Favours neither the forward nor backward rates **257.** For the endothermic reaction $2A_{(g)} + B_{(g)} = D_{(g)}$, high yields of *D* will be obtained by having (b) Low pressure and high temperature (a) High pressure and low temperature (c) High pressure and high temperature (d) Low pressure and low temperature **258.** According to Le - chatelier's principle, an increase in the temperature of the following reaction $N_2 + O_2 = 2NO - 43,200$ cal (a) Increase the yield of NO (b) Decrease the yield of NO (c) Not effect the yield of NO (d) Not help the reaction to proceed in forward direction

259.	A reversible reaction is in equilibrium. If a factor is changed w	hich effect it, then									
	(a) The speed of forward and backward reaction increases										
	(b) The speed of forward and backward reaction decreases										
	(c) Only the speed of that reaction increases which nullified the factor causes increases of speed										
	(d) No difference										
260.	The effect of increasing the pressure on the equilibrium $2A + $	$3B \Rightarrow 3A + 2B$ is									
	(a) Forward reaction is favoured	(b) Backward reaction is favoured									
	(c) No effect	(d) None of the above									
261.	Which of the following equilibria will shift to right side on inc	reasing the temperature									
	(a) $CO_{(g)} + H_2O_{(g)} \approx CO_{2(g)} + H_{2(g)}$	(b) $2SO_{2(g)} + O_{2(g)} \approx 2SO_{3(g)}$									
	(c) $H_2 O_{(g)} = H_{2(g)} + \frac{1}{2} (O_2)_{(g)}$	(d) $4HCl_{(g)} + O_{2(g)} \approx 2H_2O_{(g)} + 2Cl_{2(g)}$									
262.	The reaction $A + B = C + D +$ heat has reached equilibrium.	The reaction may be made to proceed forward by									
	(a) Adding more <i>C</i> (b) Adding more <i>D</i>	(c) Decreasing the temperature (d) Increasing the temperatu									
263.	For the gas phase reaction $C_2H_4 + H_2 = C_2H_6$, $\Delta H = -137$	$kJmol^{-}$ carried out in a closed vessel, the equilibrium concentration of									
	C_2H_4 can be increased by										
	(a) Increasing the temperature	(b) Decreasing the pressure									
	(c) Removing some C_2H_6	(d) Adding some H_2									
264.	In which of the following equilibrium systems is the rate of th	e backward reaction favoured by increase of pressure									
	(a) $PCl_5 \approx PCl_3 + Cl_2$ (b) $2SO_2 + O_2 \approx 2SO_3$										
265.	For the reaction $PCl_5(g) = PCl_3(g) + Cl_2(g)$, the forward read										
	(a) Introducing an inert gas at constant volume	(b) Introducing chlorine gas at constant volume									
	(c) Introducing an inert gas at constant pressure	(d) Decreasing the volume of the container									
266.	NO_2 (brown colour gas) exists in equilibrium with N_2O_4 (co	blourless gas) as given by chemical equation, $2NO_2 = N_2O_4$									
	Mixture is slightly brown due to existence of NO_2 . If pressure	e is increased									
	(a) Colour intensity is increased	(b) Colour intensity is decreased									
	(c) Colour intensity first increases and then decreases	(d) No change in colour intensity									
267.	Following equilibrium is disturbed by $CaCO_3(s) = CaO(s) +$	$CO_2(g)$									
	(a) Addition of $CaCO_3$ (b) Addition of CaO	(c) Addition of CO_2 (d) All of these									
268.	Which factor will shift the following equilibrium in forward di	irection									
	$AgCl(s) \Rightarrow Ag^+(aq) + Cl^-(aq)$										
	(a) Addition of $NH_3(aq)$ (b) Addition of $AgNO_3(aq)$	(c) Addition of $NaCl(aq)$ (d) Addition of $AgCl(s)$									
269.	In the manufacturing of H_2SO_4 with following equilibrium										
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$										
	reaction proceeds in the forward direction if										
	-	(c) Some SO_2 is removed (d) Some O_2 is removed									
	(a) Some SO_2 is added (b) Some SO_3 is added	(c_j) some SO_2 is removed (u_j) some O_2 is removed									

Level-1

270. For the equilibrium $2NO_2(g) = N_2O_4(G) + 14.6 kcal$, the increase in temperature would

- (a) Favour the formation of N_2O_4
- (c) Not alter the equilibrium

- (b) Favour the decomposition of N_2O_4
- (d) Stop the reaction

271. In the formation of *SO*₃ by contact process, the conditions used are (a) Catalyst, optimum temperature and higher concentration of reactants (b) Catalyst, optimum temperature and lower concentration of reactants (c) Catalyst, high temperature and higher concentration of reactants (d) Catalyst, lower temperature and lower concentration of reactants 272. $CH_3COOH_{(l)} + C_2H_5OH_{(l)} = CH_3COOC_2H_{5(l)} + H_2O_{(l)}$ In the above reaction, one mole of each of acetic acid and alcohol are heated in the presence of little conc. H_2SO_4 . On equilibrium being attained (a) 1 mole of ethyl acetate is formed (b) 2 mole of ethyl acetate are formed (c) 1/2 moles of ethyl acetate is formed (d) 2/3 moles of ethyl acetate is formed The equilibrium which remains unaffected by change in pressure of the reactants is 273. (b) $2SO_{2(g)} + O_{2(g)} \approx 2SO_{3(g)}$ (c) $2O_{3(g)} \approx 3O_{2(g)}$ (d) $2NO_{2(g)} \rightleftharpoons N_2O_4$ (a) $N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$ 274. In a vessel containing SO₃, SO₂ and O₂ at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remain constant. According to Le - chatelier principle, the dissociation of SO3 (a) Increases (b) Decreases (c) Remains unaltered (d) Changes unpredictably **275.** The endothermic reaction (M + N = P) is allowed to attain an equilibrium at 25° C. Formation of P can be increased by (a) Raising temperature (b) Lowering temperature (c) Keeping temperature constant (d) Decreasing the concentration of M and N 276. In which of the following equilibrium reactions, the equilibrium would shift to the right, if total pressure is increased (b) $H_2 + I_2 \rightleftharpoons 2HI$ (a) $N_2 + 3H_2 \rightleftharpoons 2NH_3$ (c) $H_2 + Cl_2 \Rightarrow 2HCl$ (d) $N_2O_4 \rightleftharpoons 2NO$ 277. In which of the following gaseous equilibrium an increase in pressure will increase the yield of the products (b) $2SO_2 + O_2 = 2SO_3$ (c) $H_2 + Br_2 \rightleftharpoons 2HBr$ (d) $H_2O + CO \Rightarrow H_2 + CO_2$ (a) $2HI \Rightarrow H_2 + I_2$ **278.** In the reaction A(g) + B(g) = C(g), the backward reaction is favoured by (a) Decrease of pressure (b) Increase of pressure (c) Either of the two (d) None of the two **279.** In the reaction $A_2(g) + 4B_2(g) = 2AB_4(g)$, $\Delta H < 0$ the formation of $AB_4(g)$ will be favoured at (a) Low temperature and high pressure (b) High temperature and low pressure (c) Low temperature and low pressure (d) High temperature and high pressure **280.** For the chemical reaction, $3X(g) + Y(g) \Rightarrow X_3Y(g)$ the amount of X_3Y at equilibrium is affected by (a) Temperature and pressure (b) Temperature only (c) Pressure only (d) Temperature, pressure and catalyst **281.** In $N_2 + 3H_2 = 2NH_3$ reversible reaction, increase in pressure will favour (a) Reaction in forward direction (b) Reaction in reverse direction (c) Will not exert any effect (d) In backward and forward direction equally **282.** The formation of NO_2 in the reaction, $2NO + O_2 = 2NO_2$ + heat is favoured by (a) Low pressure (b) High pressure (c) Low temperature (d) Reduction in the mass of O_2 If a mixture containing 3 moles of hydrogen and 1 mole of nitrogen is converted completely into ammonia, the ratio of initial and final 283. volumes at the same temperature and pressure would be (c) 3:1 (d) 1:3 (a) 2:1 (b) 1:2 **284.** Formation of ammonia is represented by the equation, $N_2 + 3H_2 = 2NH_3$. If 100 cm³ of nitrogen gas is used, what is the volume of ammonia produced at S.T.P

(a) 100 cm³ (b) 200 cm³ (c) 400 cm³ (d) 300 cm³ (d) 200 cm³
(e) 100 cm³ (f) 200 cm³ (c) 400 cm³ (f) 200 cm³
235. 0.6 mole of
$$N_{L1}$$
 in a reaction vessel of Z_{M1}^{-1} capacity was brought to equilibrium. The vessel was then found to contain 0.15 mole of H_2 formed by the reaction, $2NH_{NC} = N_{NC} = 3H_{NC}$; which of the following statements is true
(i) 0.15 mole of the original NT_3 had dissociated at equilibrium (ii) constant N_2 (iii) the vessel was the found to contain 0.15 mole of the original NT_3 had dissociated at equilibrium (iii) constant N_2 (iii) the vessel contained 0.45 mole of N_2
(d) The concentration of NH_3 at equilibrium is 0.25 mole per dm^3
206. Consider the equilibrium, $N_{2,C1} + 3H_{2,C2} = 2NH_{2,C1} + 34.6$ (b) the maximum yield of ammonia is obtained by
(i) Decrease of lemperature and increase of pressure
(b) Increase of both the temperature and pressure
(c) Decrease of lemperature and discrease of pressure
(d) Increase of both the expendent on and pressure
(e) Increase of both the expendent on and pressure
(f) Increase of both the expendent on and pressure
(g) Increases of hoth the expendent on and pressure
(g) Increases with increases of P
(h) K_p increases with increases of P
(h) $H_{2,0} = 50.9 \pm 10.0 \pm 10$

(b) Removal of at least one of the product at regular time intervals

	(c) Increase in the concentration of one or more products	
	(d) None of these	
297.	In the reversible reaction of type $A + B \Rightarrow AB$, in general	
	(a) Neither of the reactions will be endothermic	
	(b) Both the reactions will be exothermic	
	(c) The combination reaction will be endothermic and the	dissociation reaction will be exothermic
	(d) The combination reaction will be exothermic and the d	issociation reaction will be endothermic
298.	In which of the following system, doubling the volume of the	e container cause a shift to the right
	(a) $H_{2(g)} + Cl_{2(g)} = 2HCl_{(g)}$	(b) $2CO_{(g)} + O_{2(g)} = 2CO_{2(g)}$
	(c) $N_{2(g)} + 3H_{2(g)} = 2NH_{3(g)}$	(d) $PCl_{5(g)} = PCl_{3(g)} + Cl_{2(g)}$
299.	For the reaction $CO(g) + H_2O(g) \approx CO_2(g) + H_2(g)$ at a given by	ven temperature, the equilibrium amount of $CO_2(g)$ can be increased by
	(a) Adding a suitable catalyst	(b) Adding an inert gas
	(c) Decreasing the volume of the container	(d) Increasing the amount $CO(g)$
300.	In the reaction $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O_{(1)}$ wh	en a mole of ammonia and 1 mole of O_2 are made to react to completion
	(a) 1.0 mole of H_2O is produced	(b) 1.0 mole of <i>NO</i> will be produced
	(c) All the oxygen will be consumed	(d) All the ammonia will be consumed
301.	On addition of an inert gas at constant volume to the reactio	In $N_2 + 3H_2 \rightleftharpoons 2NH_3$ at equilibrium
	(a) The reaction remains unaffected	(b) Forward reaction is favoured
	(c) The reaction halts	(d) Backward reaction is favoured
302.	The standard state gibbs free energy change for the g $-3.67 kJ/mol$ at 400 K. If more <i>trans</i> 2-pentene is added	given isomerization reaction <i>cis</i> 2– pentene \Rightarrow <i>trans</i> 2– pentene is to the reaction vessel, then
	(a) More <i>cis</i> 2 – pentene is formed	(b) Equilibrium is shifted in the forward direction
	(c) Equilibrium remains unaffected	(d) Additional <i>trans</i> 2– pentene is formed
303.	When $NaNO_3$ is heated in a closed vessel. O_2 is liberated a	
	(a) Addition of $NaNO_3$ favours forward reaction	(b) Addition of $NaNO_2$ favours reverse reaction
	(c) Increasing pressure favours reverse reaction	(d) Increasing temperature favours forward reaction
304.	Consider the reaction $HCN_{(aq)} = H^+_{(aq)} + CN^{(aq)}$. At equilibrium	
	(a) Reduce <i>HCN</i> _(aq) concentration	(b) Decrease the $H^+_{(aq)}$ ion concentration
	(c) Increase the equilibrium constant	(d) Decrease the equilibrium constant
305.	The chemical reaction : $BaO_{2(s)} \neq BaO_{(s)} + O_{2(g)} \Delta H = +ve$	
505.		
	(a) Increase mass of <i>BaO</i>	(b) Increase mass of BaO_2
	(c) Increase in temperature	(d) Increase mass of BaO_2 and BaO both
306.	The following equilibrium exists in aqueous solution <i>CH</i> temperature than the	$H_3COOH \Rightarrow CH_3COO^- + H^+$. If dilute <i>HCl</i> is added without change in
	(a) Concentration of CH_3COO^- will increase	(b) Concentration of CH_3COO^- will decrease
	(c) Equilibrium constant will increase	(d) Equilibrium constant will decrease
307.	Following gaseous reaction is undergoing in a vessel C_2H_4	+ $H_2 \Rightarrow C_2 H_6$; Δ <i>H</i> = – 32.7 <i>kcal</i> . What will increase the equilibrium
	concentration of C_2H_6	

- (a) Increase of temperature (b) By reducing temperature (c) By removing some hydrogen (d) By adding some C_2H_6 308. Pure ammonia is placed in a vessel at temperature where its dissociation constant (α) is appreciable. At equilibrium (a) K_p does not change significantly with pressure (b) α - does not change with pressure (c) Concentration of NH_3 does not change with pressure (d) Concentration of H_2 is less than that of N_2 **309.** A system in equilibrium is described by the gaseous phase equation Heat + $SO_2Cl_2 \square SO_2 + Cl_2$ Which of the following statement is true (a) Addition of Cl_2 will shift the equilibrium towards right and temperature is raised (b) Addition of Cl_2 will shift the equilibrium towards left and temperature is raised (c) Withdrawl of Cl_2 and SO_2 will shift the equilibrium towards left and temperature is raised (d) Withdrawl of SO_2 and Cl_2 will shift the equilibrium towards left and temperature is lowered. 310. Consider the general hypothetical reaction $A(s) \square 2B(g) + 3C(g)$ If the concentration of *C* at equilibrium is doubled, then after the equilibrium is re-established, the concentration of *B* will be (a) Two times the original value One half of its original value (b) (c) $\frac{1}{2\sqrt{2}}$ times the original value (d) $2\sqrt{2}$ times the original value **311.** Consider the water gas equilibrium reaction $C(s) + H_2O(g) \square CO(g) + H_2(g)$ Which of the following statement is true at equilibrium (a) If the amount of *C*(*s*) is increased, less water would be formed (b) If the amount of C(s) is increased, more CO and H_2 would be formed (c) If the pressure on the system is increased by halving the volume, more water would be formed (d) If the pressure on the system is increased by halving the volume, more CO and H_2 would be formed. **312.** The equilibrium $P_4(g) + 6Cl_2(g) \Box 4PCl_3(g)$ is attained by mixing equal moles of P_4 and Cl_2 in an evacuated vessel. Then at equilibrium (b) $[Cl_2] > [P_4]$ (a) $[Cl_2] > [PCl_3]$ (c) $[P_4] > [Cl_2]$ (d) $[PCl_3] > [P_4]$ Level-1 313. Le-chatelier's principle is applicable (a) At reaction equilibria (b) At reaction unequilibria (c) At dissociation of electrolyte (d) None of these
- **314.** When in any system at equilibrium state pressure, temperature and concentration is changed then the equilibria shifted to such a direction which neutralize the effect of change. This is known as

(a) First law of thermodynamics

(b)

Le-chatelier's principle

	(c) Ostwald's rule		(d)	Hess's law of constant heat	sum	mation								
315.	Suppose the reaction $PCl_{5(s)}$	$\Rightarrow PCl_{3(s)} + Cl_{2(g)}$ is in a closed	vess	el at equilibrium stage. W	s the effect on equilibrium									
	concentration of $Cl_{2(g)}$ by addi	ng PCl_5 at constant temperature												
	(a) Decreases		(b)	(b) Increases										
	(c) Unaffected		(d) Cannot be described without the value of K_p											
316.	The rate at which substances re	act depends on their												
	(a) Atomic weight	(b) Molecular weight	(c)	Equivalent weight	(d)	Active mass								
317.	Chemical equations convey qua	ntitative information on the												
	(a) Type of atoms/molecules taking part in the reaction													
	(b) Number of atoms/molecules of the reactants and products involved in the reaction													
	(c) Relative number of moles of	of reactants and products involved i	in the	ereaction										
	(d) Quantity of reactant consum	med and quantity of product inform	ned											
318.	The variation of equilibrium co	nstant with temperature is called												
	(a) Van't Hoff isotherm	(b) Kirchhoff's equation	(c)	Van't Hoff isochore	(d)	None of these								
319.	The effect of temperature on eq	uilibrium constant was first studied	d by											
	(a) Arrhenius	(b) Van't Hoff	(c)	Lewis	(d)	Vander Waal's								
320.	In the case of gaseous homogen	eous reaction, the active mass of th	e rea	ctant is obtained by the expr	essio	n								
	(a) $\frac{PV}{RR}$	(b) $\frac{P}{}$	(c)	RT	(d)	$\frac{n}{V}RT$								
	RT	RT	(-)	Р	()	V								

<u>Answersheet</u>

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	с	а	а	С	d	b	d	а	b	с	с	а	b	с	а	d	с	с	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	d	d	С	b	а	С	d	b	b	С	b	b	а	а	с	с	d	а	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	а	а	d	С	b	а	c,d	d	а	С	а	а	d	b	а	а	а	d	с
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	С	а	d	С	а	С	С	а	С	d	d	b	b	d	С	а	d	d
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
d	d	С	b	а	С	С	d	b	b	d	С	b	С	b	С	С	С	С	с
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
а	b	d	b	а	С	d	b	а	d	а	С	а	С	d	d	b	С	d	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
b	а	b	d	С	b	b	d	С	d	С	b	С	d	с	а	b	d	а	с
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	С	С	d	b	С	С	b	b	b	С	а	а	с	b	с	b	с	С	с
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
с	b	С	С	а	а	d	d	b	d	а	b	b	а	С	b	С	d	С	а
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	а	d	С	d	b	а	d	а	а	d	а	b	b	С	с	с	d	С	а
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
d	с	b	b	b	а	b	а	а	b	с	d	d	с	d	b	d	b	а	b
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	а	b	С	а	С	а	С	d	b	d	С	d	d	b	b	d	d	b	а
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
b	а	с	d	а	с	d	с	d	С	d	а	d	b	b,c	с	С	а	С	С
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
с	с	a,b	а	С	b	С	d	а	b	а	d	а	с	а	а	b	а	а	а
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
а	b,c	а	b	d	а	d	b	а	а	d	с	а	d	с	с	d	d	d	с
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
а	а	abcd	b	С	b	b	а	b	С	С	С	а	b	b	d	с	с	b	b